Docklight Application Note: Docklight Tap Pro and Docklight Tap 485

Table of Contents
Docklight Application Note: Docklight Tap Pro and Docklight Tap 485.. 1
1 Docklight Tap Pro and Docklight Tap 485... 1
2 Wiring and connections ... 2
2.1 RS232 monitoring using Docklight Tap Pro.. 2
2.2 RS232 monitoring using Docklight Tap 485 .. 3
2.3 RS485 2-wire (half duplex) monitoring using Docklight Tap 485 ... 4
2.4 RS485/RS422 4-wire (full duplex) monitoring using Docklight Tap 485 .. 5
3 Software Options ... 6
4 Docklight Pro Monitor .. 6
4.1 Quickstart ... 6
5 Docklight and Docklight Scripting .. 7
5.1 Quickstart ... 7
5.2 Time Stamp Resolution and Processing .. 8
5.2.1 Hardware Timing vs. Windows Time .. 8
5.2.2 Idle Times Resolution .. 8
5.3 How to Display and Evaluate Handshake Signals .. 9
5.3.1 Signal Function Character ‘!’ (F11) in Tap Pro and Tap 485 mode ... 9
5.3.2 Function Character ‘^’ (F12) for Bitwise Comparisons ... 9
5.3.3 DL.GetHandshakeSignals() Script Method .. 10
5.4 Receive Sequence Comment Macros ... 10
6 Driver Installation ... 11
7 Copyright .. 12
8 References .. 12

1 Docklight Tap Pro and Docklight Tap 485

Docklight Tap Pro and Docklight Tap 485 are advanced serial data monitoring taps for the following areas of application:

- **RS232** (RS232 and 3.3V/5V TTL voltage levels) – Docklight Tap Pro and Docklight Tap 485
- **RS485 2-wire** and **RS422 4-wire** differential voltage levels – Docklight Tap 485

Both tap devices use their own real-time clock to timestamp all serial data with internal accuracy 1µs.

NOTE: Docklight Tap Pro and Docklight Tap 485 are passive monitoring devices only. For sending and receiving data on a RS485 bus, use Docklight and a standard USB-to-RS485 adapter as described in Docklight Application Note: RS422/485 communication [4]:

http://docklight.de/pdf/Docklight_Application_Note_RS422_485.pdf

2 Wiring and connections

2.1 RS232 monitoring using Docklight Tap Pro

Docklight Tap Pro works as an insert into standard RS232 SUB D9 communication connections. It can monitor both data transfer directions TX + RX, as well as handshake / flow control signals RTS, DTR, DCD, DSR, CTS and RI.

![SUB D9 Wiring Diagram](http://docklight.de/pdf/Docklight_Application_Note_RS422_485.pdf)
2.2 RS232 monitoring using Docklight Tap 485

In RS232 mode, the Docklight Tap 485 pin assignment on the Phoenix 9-pole connector corresponds to the RS232 SUB D9 pinout:

<table>
<thead>
<tr>
<th>RS232 Pin No.</th>
<th>Signal Name</th>
<th>Description</th>
<th>DTE in/out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD</td>
<td>Data Carrier Detect</td>
<td>Input</td>
</tr>
<tr>
<td>2</td>
<td>RX</td>
<td>Receive Data</td>
<td>Input</td>
</tr>
<tr>
<td>3</td>
<td>TX</td>
<td>Transmit Data</td>
<td>Output</td>
</tr>
<tr>
<td>4</td>
<td>DTR</td>
<td>Data Terminal Ready</td>
<td>Output</td>
</tr>
<tr>
<td>5</td>
<td>SGND</td>
<td>Signal Ground</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>Data Set Ready</td>
<td>Input</td>
</tr>
<tr>
<td>7</td>
<td>RTS</td>
<td>Request To Send</td>
<td>Output</td>
</tr>
<tr>
<td>8</td>
<td>CTS</td>
<td>Clear To Send</td>
<td>Input</td>
</tr>
<tr>
<td>9</td>
<td>RI</td>
<td>Ring Indicator</td>
<td>Input</td>
</tr>
</tbody>
</table>

For convenient monitoring of RS232 SUB D9 connections using Docklight Tap 485, we include a free breakout board readily wired for the Docklight Tap 485 9-pole Phoenix connector.

NOTE: Such unshielded breakout/wiring boards may not be suitable for very high speed connections (close to 1 Mbps) or environments with problematic EMI.
2.3 RS485 2-wire (half duplex) monitoring using Docklight Tap 485

In RS485/RS422 signal mode, Docklight Tap 485 uses the following pin assignment:

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TX+</td>
<td>Transmit Data</td>
</tr>
<tr>
<td>2</td>
<td>TX-</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>RTS+</td>
<td>Request To Send</td>
</tr>
<tr>
<td>4</td>
<td>RTS-</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>Signal Ground</td>
</tr>
<tr>
<td>6</td>
<td>RX+</td>
<td>Receive Data</td>
</tr>
<tr>
<td>7</td>
<td>RX-</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>CTS+</td>
<td>Clear To Send</td>
</tr>
<tr>
<td>9</td>
<td>CTS-</td>
<td></td>
</tr>
</tbody>
</table>

In the majority of RS485 and RS422 applications, the RTS and CTS handshake signals are not used and only the Transmit and Receive data connections need to be wired.

For standard RS485 2-wire applications, connect the RS485 +/- data signal lines and GND signal ground to Docklight Tap 485 TX+ and TX- inputs.

NOTE: Signal ground connections in RS485/422 systems require careful design, because of possible problems with ground loop currents (when signal GND is connected between remote bus nodes) or high ground potential differences GPD (when no common signal GND is used). See also “Grounding and Insulation” in Texas Instruments Application Report: The RS-485 Design Guide SLLA272C [7].

Docklight Application Note

Docklight Tap Pro and Docklight Tap 485

Applies to: Docklight / Docklight Scripting / Docklight Pro Monitor

Flachmann & Heggelbacher

www.fuh-edv.de

Page 4 / 12
2.4 RS485/RS422 4-wire (full duplex) monitoring using Docklight Tap 485

In 4-wire applications, Docklight Tap 485 can distinguish two different data directions: “Transmit/TD/TX” and “Receive/RD/RX”. In addition to the 2.3 wiring, the RD/RX data direction is connected to Docklight Tap 485 at pin no. 6 (RX+) and 7 (RX-).
3 Software Options

For monitoring applications with Docklight Tap Pro and Docklight Tap 485 you can choose between the following Windows software options:

- **Docklight RS232 Terminal / RS232 Monitor** – the solution for advanced data sequence detection and reformating, but with limitations when it comes to high baud rates (>100 kbps) and high data throughput.

- **Docklight Pro Monitor** – a lightweight and lightning-fast monitoring tool for high-speed connections and high data throughput. Docklight Pro Monitor is a free addition to Docklight Scripting.

4 Docklight Pro Monitor

4.1 Quickstart

1. Make sure you have installed the latest Docklight Tap USB drivers (FTDI device drivers).

 On Windows 10, Windows 8 and Windows 7 this is fully automatic – just plug in the Tap USB cable and Windows Update will download and install the correct drivers, if required.

 For details see Section 6: Driver Installation.

3. Start Docklight Pro Monitor, and choose **Channels -> Configuration**

4. Pick the correct **Serial Communication Parameters** (baud rate, parity, ...) and **Signaling Level** (0 – RS232/TTL, 1 – RS422/485, 2 = Inverted RS232/TTL)

5. Confirm and press **Start** (F5).

6. On-the-fly adjustments of the amount of detail displayed can be made using the **Content Off / On** switches.
7. Copy communication data to clipboard (Ctrl+C) or switch between ASCII, HEX, Decimal or Binary representation while monitoring.

5 Docklight and Docklight Scripting

5.1 Quickstart

1. Make sure you have installed the latest Docklight Tap USB drivers (FTDI device drivers).

On Windows 10, Windows 8 and Windows 7 this is fully automatic – just plug in the Tap USB cable and Windows Update will download and install the correct drivers, if required.

For details see Section 6: Driver Installation.

2. Download and install Docklight or Docklight Scripting from http://docklight.de/downloads/

3. Start Docklight, choose the menu Tools > Project Settings... and select Communication Mode: Monitoring. For Receive Channel 1 and Receive Channel 2, select the VTP ports available from the dropdown lists, e.g. VTP0 and VTP1.

4. Review and adjust the COM Port Settings (baud rate, parity, …). For the Tap Pro / Tap 485 you can additionally set the Signaling Level (0 – RS232/TTL, 1 – RS422/485, 2 = Inverted RS232/TTL). Confirm all settings with OK.

5. Press Start Communication (F5) in Docklight and start your monitoring application.

Docklight Tap Pro and Docklight Tap RS485 support very high baud rates (up to 921000 baud) with maximum monitoring accuracy. Depending on your average data traffic and your Docklight program...
settings, you can easily run into situations where Docklight is simply not fast enough to display and process all the incoming monitoring data, and you will receive a „Input Buffer Overflow“ message by Docklight.

To avoid such overflows, you can either:

- Switch to a simpler display representation. See the Docklight User Manual [2] section „How to Increase the Processing Speed...“ for more information and how to resolve this problem: http://docklight.de/manual/howtoncreasetheprocessing.htm
- Use Docklight Pro Monitor instead, as described in section 4.

NOTE: All Docklight Tap devices are „hot-pluggable“ when used with Docklight – if the device becomes unavailable during a Docklight monitoring session, Docklight issues a warning and reconnects to the device when it is plugged back in again.

5.2 Time Stamp Resolution and Processing

Docklight Tap Pro and Docklight Tap RS485 provide exact hardware microseconds timing. Docklight does not expose the full internal resolution of the time tagging, and the visible time stamp resolution is milliseconds, as in other Docklight applications.

5.2.1 Hardware Timing vs. Windows Time

Docklight provides time stamps that are linked to the Windows local time on the PC. It reads the Tap Pro / Tap 485 hardware clock for measuring short time intervals (below 10 seconds) with high accuracy, but refers/synchs to the Windows local time on communication start, or after communication idle times larger than 10 seconds.

In addition, Docklight makes sure that the hardware time provided does not slowly drift away from the Windows local time during long-term measurements with continuous data.

This effectively gives you the best of both worlds: true milliseconds accuracy and correct order of data when you need it, but also meaningful “drift-free” local time when you are measuring over a long period of time.

5.2.2 Idle Times Resolution

Since the time stamp information is generated by the Tap Pro / Tap 485 device itself, Docklight needs to manually request new time stamps in periodic intervals during communication idle times. The resulting update interval is then approx. 15 milliseconds. So the following Docklight Scripting script

\[
\text{DL.StartCommunication()}
\]
\[
\text{Do}
\]
\[
\text{DL.AddComment DL.GetDocklightTimeStamp()}
\]
\[
\text{Loop}
\]

will result in output similar to this, if there is no serial communication data currently:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.06.2015</td>
<td>20:07:36.102</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.102</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.102</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.118</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.118</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.118</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.118</td>
</tr>
<tr>
<td>27.06.2015</td>
<td>20:07:36.134</td>
</tr>
</tbody>
</table>

This behavior is by design and does not influence the time stamp accuracy for received serial communication data in any way.
5.3 How to Display and Evaluate Handshake Signals

The Tap Pro / Tap 485 devices report handshake signal changes from both communication directions: DTE (Docklight Receive Channel 1) and DCE (Docklight Receive Channel 2).

5.3.1 Signal Function Character ‘!’ (F11) in Tap Pro and Tap 485 mode

The Function Character ‘!’ (F11) supports the following parameter values when used in Tap Pro and Tap 485 applications:

<table>
<thead>
<tr>
<th>Bit No.</th>
<th>Character Value (Decimal Mode)</th>
<th>Handshake Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>001</td>
<td>CTS = High (DCE side / Docklight Receive Channel 2)</td>
</tr>
<tr>
<td>1</td>
<td>002</td>
<td>DSR = High (DCE side / Channel 2)</td>
</tr>
<tr>
<td>2</td>
<td>004</td>
<td>DCD = High (DCE side / Channel 2)</td>
</tr>
<tr>
<td>3</td>
<td>008</td>
<td>RI (Ring Indicator) = High (DCE side / Channel 2)</td>
</tr>
<tr>
<td>4</td>
<td>016</td>
<td>RTS = High (DTE side / Channel 1)</td>
</tr>
<tr>
<td>5</td>
<td>032</td>
<td>DTR = High (DTE side / Channel 1)</td>
</tr>
</tbody>
</table>

For easy evaluation of bit-oriented data like the above handshake signal states, two new features have been added to the Docklight Receive Sequence syntax:

5.3.2 Function Character ‘^’ (F12) for Bitwise Comparisons

The Function Character ‘^’ can be added by pressing F12 in the Edit Receive Sequence dialog. After the ‘^’ Function Character, two additional character values specify which bits to check (<mask>) and which values to expect for these bits (<value>).

<table>
<thead>
<tr>
<th>Receive Sequence (HEX Mode)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>^</td>
<td><mask></td>
</tr>
<tr>
<td>^</td>
<td>0F</td>
</tr>
<tr>
<td>!</td>
<td>^</td>
</tr>
</tbody>
</table>
TIP: This extension is also demonstrated in the Docklight Scripting example project Docklight_TapPro_Demo.ptp (see the folder Extras\TapPro in your Script Samples directory)

5.3.3 DL.GetHandshakeSignals() Script Method
The script method DL.GetHandshakeSignals() returns the current handshake signal states as an integer bit field, in the same way the function character '! ' works (see table in section 5.3).

Code Example:
DL.StartCommunication
Do
 DL.AddComment DL.GetDocklightTimeStamp() & " - GetHandshakeSignals() = " &
 DL.GetHandshakeSignals()
 DL.Pause 200
Loop

Example Communication Window output:
6/23/2015 10:07:44.244 - GetHandshakeSignals() = 0
6/23/2015 10:07:44.469 - GetHandshakeSignals() = 48
6/23/2015 10:07:44.677 - GetHandshakeSignals() = 48
6/23/2015 10:07:44.884 - GetHandshakeSignals() = 48

(RTS and DTR are changing to High in this example).
NOTE: It can take 5-10 milliseconds after DL.StartCommunication() until DL.GetHandshakeSignals() reports the correct signal state.

5.4 Receive Sequence Comment Macros
The following macro keywords can be used to create Docklight comment texts with dynamic data, e.g. the actual data received.

<table>
<thead>
<tr>
<th>Comment Macro</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>%_L</td>
<td>Insert a line break</td>
</tr>
<tr>
<td>%_T</td>
<td>Insert the time stamp for the data received</td>
</tr>
<tr>
<td>%_C</td>
<td>Insert the Docklight channel no. / data direction (1 or 2) for the data received</td>
</tr>
<tr>
<td>%_A</td>
<td>Insert the actual data that triggered this Receive Sequence. Use ASCII representation</td>
</tr>
<tr>
<td>%_H</td>
<td>Same as %_A, but in HEX representation</td>
</tr>
<tr>
<td>%_D</td>
<td>Same as %_A, but in Decimal representation</td>
</tr>
<tr>
<td>%_B</td>
<td>Same as %_A, but in Binary representation</td>
</tr>
<tr>
<td>%_A(1,4)</td>
<td>Extended syntax: Insert only the first 4 characters of this Receive Sequence (start with Character No. 1, sequence length = 4)</td>
</tr>
<tr>
<td>%_H(3,-1)</td>
<td>Extended Syntax: Insert everything from the third character until the end of the sequence (length = -1). Use HEX representation.</td>
</tr>
</tbody>
</table>

Example for detecting and displaying the Tap Pro and Tap 485 handshake signals changes:

1. Open the Edit Receive Sequence dialog and create a Receive Sequence with a Function Character '!' (F11), followed by a '?' wildcard (F7)
2. In 3 – Action, add the following Comment text:

\%_L\%_T Handshake Signals 0\|0\|DTR\|RTS\|RING\|DCD\|DSR\|CTS = \%_B(2,1)

This Receive Sequence will trigger on any handshake signal change reported and add an extra line to the Docklight Communication Window output:

6/22/2015 17:01:32.058 Handshake signals 0\|0\|DTR\|RTS\|RING\|DCD\|DSR\|CTS = 00100000

6 Driver Installation

Driver download on Windows 10, Windows 8, Windows 7 is fully automatic via Windows. After plugging in the Docklight Tap USB cable, the device drivers are installed automatically, if required.

For additional instructions and installation details on Windows XP, or for driver uninstallation or other special cases, please see the installation guides for the FTDI chipset used in Docklight Tap Pro and Docklight Tap 485, as available on the FTDI web site:

http://ftdichip.com/Documents/InstallGuides.htm
7 Copyright

Copyright 2018 Flachmann und Heggelbacher GbR

All rights reserved. No parts of this work may be reproduced in any form or by any means - graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems - without the written permission of the publisher.

Trademarks

Products that are referred to in this document may be either trademarks and/or registered trademarks of the respective owners. The publisher and the author make no claim to these trademarks.

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

Disclaimer

While every precaution has been taken in the preparation of this document, the publisher and the author assume no responsibility for errors or omissions, or for damages resulting from the use of information contained in this document or from the use of programs and source code that may accompany it. In no event shall the publisher and the author be liable for any loss of profit or any other commercial damage caused or alleged to have been caused directly or indirectly by this document.

Contact

E-Mail Support: docklight@fuh-edv.de
Flachmann & Heggelbacher
Waldkirchbogen 27
D-82061 Neuried (Munich)
Germany
http://www.fuh-edv.de

8 References

[3] Docklight Tap Application Note
http://docklight.de/pdf/Docklight_Application_Note_DocklightTap.pdf

[4] Docklight Application Note: RS422/485 communication
http://docklight.de/pdf/Docklight_Application_Note_RS422_485.pdf

[5] Docklight Tap Pro Product Sheet
http://www.docklight.de/pdf/Docklight_Tap_Pro.pdf
