e
G Docklight

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

1. Copyright 5
2. Introduction 7
2.1 DOCKIIght - OVEIVIEWceeiiiiiinniiiiiinniiiiisnenissssneenissssnnsiisssssenissssssssssssssssnssssssssssssssnssssss 8
2.2 TYPICAl APPHICALIONS ..ceerrreeeeeeiiieeciiirrneeeeeteeeecrsssenneeeeeeeessssssssssseeseesessssssnsssessesssssssannasasens 8
2.3 SYStEM REQUITEMENTScieeeiiiiierirerererererererereresesesesesesesesesesesssssssssesssssasssesssssssasssssssasasens 10
3. User Interface 11
31 Main WINAOW ...ccueeiiiiiinniiiiinnniiiineiiissnsesiisssesiisssseniissssesissssssisssssssssssssssssssssnsssssss 12
3.2 Clipboard - Cut, COPY & PASTE ...cccceiiieeiiirrcneeeeereccesrssnneeeeeeeeecsssssnssseeessesssssssssssessessesses 13
3.3 DOocUMENTALION Ar@Aueeiiiiiueiriiiineriiiisnniisssssnetisssnsnissssssnsssssssssssssssssssssssssssssssnsssses 13
4. Features and Functions 14
4.1 How Serial Data Is Processed and Displayedcccceeiveniiiisnnninnssnnnissssnnnnesssnennenns 15
4.2 Editing and Managing SEQUENCESceeeeeeeeeenennnenesennnssssasssans 15
5. Working with Docklight 17
5.1 Testing a Serial Device or a Protocol Implementationcceeeeeeecernrnneeeeeeeececsssnnnnee 18
5.2 Simulating a Serial DEVICEcccvviiiiiiinniiiinssnniiinisnniiiissnnniisssseniisssessssssssissssssssssssnns 19
5.3 Monitoring Serial Communications Between TWO DeViCesccccceveeeecrrrrnneeeeereecennns 21
5.4 Catching a Specific Sequence and Taking a Snapshot of the Communication 23
5.5 Logging and ANalyzing @ TeStccccciiiiirreniiiiinnniiiinnneniinisnniisssnesisssssensssssssssssssnsssesss 23
5.6 Checking for Sequences With Random Characters (Receive Sequence
WIIACArAS) .eeeeeeeeeeereeeeiirrrnnneeeeeeeeesssssnneeeeeeeecessssssssseesessessssssnssssessesssssssssssssessssssssssannassesses 24
5.7 Saving and Loading Your Project Datacccccceeriieeciiinrcmeenennecccsssnnneeeseesecsssssenneesennes 26
6. Working with Docklight (Advanced) 28
6.1 Sending Commands With Parameters (Send Sequence Wildcards)cccceevereennnnne 29
6.2 How to Increase the Processing Speed and Avoid "Input Buffer Overflow"
IVIESSAZES ceuviieriiireennnnsiiieeiiineennnsssisessiissansssssssesssssssnsssssssssssssssnsssssssssssssssnssssssssssssssannnnssnss 30
6.3 How to Obtain Best TimMing ACCUTACYcccceeirrneriiisssneniisssnnnsssssnnsnssssssenssssssssssssssnsssssss 31
6.4 Calculating and Validating Checksumsccccciiiviiinsninnnnninnnnninnenisnnnnsensssesssnens 31
6.5 Controlling and Monitoring RS232 Handshake Signalsccccccevverriiveriinersisensisnnnn. 33
6.6 Creating and Detecting Inter-Character Delaysccccccereeeccirrccmmeeeeniecccsssnnneeenneeeennns 37
6.7 Setting and Detecting @ "Break" Stateccccccceeeeeeciirrrsneeeeeeeeccsssssnnneeeeeeeesssssansesseens 38
7. Examples and Tutorials 40
7.1 Testing a Modem - Sample Project: ModemDiagnosticsS.ptp ...cccceeeerrrrnneeeeereececsrnannes 41
7.2 Reacting to a Receive Sequence - Sample Project: PingPong.ptpccccceeeeerreiirnnnnnane 42
7.3 Modbus RTU With CRC checksum - Sample Project: ModbusRtuCrc.ptpccceee... 43

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

8. Reference 46
8.1 [\ L=To TV Ta o I Ie Yo | o - T N 47
8.2 Dialog: Edit SENA SEQUENCE ...cceeeeeieeeecrrrrsneeeeereecersssssnneeeeeeeecsssssssssseeseesessssssnsassessessesses 48
8.3 Dialog: Edit ReCEIVe SEQUENCEcccceriiirrnrriisssnnniiisssnnniisssnenisssssnssssssssensssssssassssssnsssssss 49
8.4 Dialog: Start Logging / Create LOg FIle(S)ccccvvrrrrrrrrrrrrrenrrssnnressnneesnneessnessssneessnneesnns 50
8.5 Dialog: Customize HTIMIL OQUTPULccccvrrrceeeeeereecersrssnnneeeeeeeecesssssnssseeseesessssssnnsssessessesses 51
8.6 Dialog: FINA SEQUENCEcceiiiiueeiiiiineiiiiisneiiisisnnniiisssnenissssssenssssssssssssssssnssssssssssssssnsssssss 53
8.7 Dialog: Send SeqUENCE PAarameterccccccceeereeceerrrrnneeeeeeeecessssssssseeseesessssssnssssessessesses 53
8.8 Dialog: Project Settings - COMMUNICAtION ...ccceeeeirrrrceneeeeeeeecerrssnneeeeeeeeeecssssnneeseesessesses 54
8.9 Dialog: Project Settings - FIOW CONtrolccccciiiiiineiiininnniinnsnnnniisssnenisssnennssssnesses 56
8.10 Dialog: Project Settings - CommMUNICAtiON Filtercceeeeeeeeeeirrrreeeeereeeccrsrrsnneeeeeneecennns 56
8.11 (DT Lo ¥ = 0 T« 1 4 o T 13N 57
8.12 Dialog: EXPert OPLiONS ...cccccvrrcceeeeereeeecrrsssneeeeerencessssssnssseeessesssssssssssssssssessssssnssssessessasses 58
8.13 Keyboard CONSOIEcceieeeiirrrreeeeeteeeecirsssnneeeeereneessssssnsseeeeeeessssssssssssesessessssssnnassessessesses 60
8.14 Checksum SPeCifiCationcccceiiiiicneniinininniininneiiiieeiessesiesseresssssessssssessesssssens 60

9. Support 64
9.1 Web Support and Troubleshootingccccvveeereieeeciirrrsneeeeeeeeecsssssnnneeeeeeeccssssansesseens 65
9.2 E-Mail SUPPOTT «.cureeeeeereieieeciirrsnneeeeteeeessssssnseseeesessessssssnsssessssesssssssssssssssssesssssannassessessasses 65

10. Appendix 66
10.1 ASCII Character Set Tablesccccciiiiiivniiiiinnnniiiiinniiiiineiiiiseisseisssene 67
10.2 [Lol (=YL 69
10.3 RS232 CONNECEOIS / PINOULeeeereeeereeeeisneeeessssseessssssseesssssssessssssssesssssssesssssssassssssnsansns 70
10.4 Standard RS232 CabIescccciiiirueriiiisnniiiiisneniisssnninssssnenisssssnenissssssssssssssnsssssssssssssssnns 73
10.5 Docklight Monitoring Cable RS232 SUB D9cccccvrrreereeeeeccersssnneeeeeeeeeessssssnsesseesessesses 76
10.6 DOCKIZNT TAP ceecerrreeeeeeiiieeceirrsnnneeeeteeeecssssanneeeeereesessssssnsssessseessssssssssssssssssssssssnnassessessesses 77
10.7 DOCklight Tap Pro / Tap 485ececceicercerrcnerienssnesseesssesssssssssssssessssssssesssssssssssssassnsssns 78

11. Glossary / Terms Used 80
11.1 Vot o oo Rt 81
11.2 2T =T | 81
11.3 01 1T T - o =T 81
114 0 N 81
115 5 L 82
11.6 DTE iiieeeeeeiiiieiniinnenneesiseinninnensesssssesntnnmsssssssssssnsrsssnsnnnnsssss 82
11.7 FIOW CONEIOL ...oueeiieiiiiiniiiinininninsenissenissasnssssnnsssasssssssssssssssssnsssssnssssssssssssssssssssssassssnns 82
11.8 L 82

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

11.9 IMOADUS ...ceeiiiiiiiiiieininiisnninsenssses e sssassss s ssssassesssssesssssessnsssssssssssnsssssnsssssnssssnssssnns 82
11.10 MUltidrop BUS (IVIDB)ccccerrrreeeeeeeeeecerssnneeeeeeeecessssssnsssseessessssssssssssssessesssssassasssssessasses 83
11.11 RECEIVE SEQUENCE ..ceeerriiiiiiiiissnnnerniiiississsssssnssiisssssssssssssssssssssssssssssnsssssssssssssnsansssssssssses 83
T £ 1 83
T T 7 83
11,14 RSA8Dcceiiireiiirneniisnensissssssssssssssssssssssssssssssssssssasssssssssssssssssssssssnssssssssssssssssssssssssssssasssns 84
11.15 SN SEQUENCEceeesesesesssesesssns 84
0 R Y= T T ¥ =T ol 84
11.17 SeQUENCE INAEX ...ceeseesesssasns 85
11.18 Serial DEVICE SEIVETcccciiiriiiisuniissnniissnnisssnnisssnnssssnssssssissssssssssssssssssssssssssssssssssssssasssss 85
10 T Y =T 1 o o 1 85
11.20 TrZEEI eeesessseessesssesssesssssesssssssssssssesssssesssssssssssssssssssssssnnns 85
T O U Y 85
11.22 Virtual NUull Modemcccciiiiiiieniiiinneniniinnniinnneiisssmeiiissenissmsenissssssssssssssssssssenes 86
T T 1, T [T 86
Index 0

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Copyright

Copyright

1 Copyright

Copyright 2002-2023 Flachmann und Heggelbacher GmbH & Co. KG and
Kickdrive Software Solutions

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping,
or information storage and retrieval systems - without the written permission of the
publisher.

Trademarks

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Disclaimer

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage
caused or alleged to have been caused directly or indirectly by this document.

Contact

E-Mail Support: support@docklight.de
www.docklight.de

Flachmann und Heggelbacher GmbH & Co. KG
Waldkirchbogen 27

D-82061 Neuried

Germany

www.fuh-edv.de

Kickdrive Software Solutions e.K.
Robert-Bosch-Str. 5

D-88677 Markdorf

Germany

www.kickdrive.de

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

mailto:support@docklight.de
https://docklight.de
http://www.fuh-edv.de
http://www.kickdrive.de

Introduction

Introduction

2 Introduction

2.1 Docklight - Overview
|

Docklight is a testing, analysis, and simulation tool for serial communication protocols
(RS232, RS485/422 and others). It allows you to monitor communications between two
serial devices or to test the serial communication of a single device. Docklight is easy to
use and works on almost any standard PC running Windows 11, Windows 10,
Windows 8, or Windows 7.

Docklight's key functions include

¢ simulating serial protocols - Docklight can send out user-defined sequences
according to the protocol used and it can react to incoming sequences. This makes it
possible to simulate the behavior of a serial communication device, which is
particularly useful for generating test conditions that are hard to reproduce with the
original device (e.g. problem conditions).

¢ logging RS232 data - All serial communication data can be logged using two
different file formats. Use plain text format for fast logging and storing huge amounts
of data. An HTML file format, with styled text, lets you easily distinguish between
incoming and outgoing data or additional information. Docklight can also log any
binary data stream including ASCIl 0 <NUL> bytes and other control characters.

¢ detecting specific data sequences - In many test cases, you will need to check for
a specific sequence within the RS232 data that indicates a problem condition.
Docklight manages a list of such data sequences for you and can perform user-
defined actions after detecting a sequence, e.g. taking a snapshot of all
communication data before and after the error message was received.

¢ responding to incoming data - Docklight lets you specify user-defined answers to
the different communication sequences received. This allows you to build a basic
simulator for your serial device within a few minutes. It can also help you to trace a
certain error by sending out a diagnostics command after receiving the error
message.

Docklight will work with the COM communication ports provided by your operating
system. Physically, these ports will be RS232 SUB D9 interfaces in many cases.
However, it is also possible to use Docklight for other communication standards such as
RS485 and RS422, which have a different electrical design to RS232 but follow the
RS232 communication mechanism.

Docklight has also been successfully tested with many popular USB-to-Serial
converters, Bluetooth serial ports, GPS receivers, virtual null modems, Arduino,
MicroPython/pyboard or other Embedded/UART boards that add a COM port in
Windows.

For RS232 full-duplex monitoring applications, we recommend our Docklight Tap USB
accessory or our Docklight Monitoring Cable.

This manual only refers to RS232 serial connections in detail, since this is the basis for
other serial connections mentioned above.

TIP: For getting started, have a look at the Docklight sample projects, which
demonstrate some of the basic Docklight functions.

2.2 Typical Applications
|

Docklight is the ideal tool to support your development and testing process for serial
communication devices. Docklight may be used to

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Introduction

¢ Test the functionality or the protocol implementation of a serial device.
You may define control sequences recognized by your device, send them, log and
analyze the responses and test the device reaction.

)

Docklight PC Davice

o Simulate a serial device.
Although rare, the possibility of a hardware fault must be considered in most systems.
Imagine you have a device that sends an error message in the case of a hardware
fault. A second device should receive this error message and perform some kind of
reaction. Using Docklight you can easily simulate the error message to be sent and
test the second device's reaction.

I"_ _______ - ™y
|
|
™ T — |
. g E===S -
I
| Device 1 Device 2

|

Docklight PC

e Monitor the communication between two devices.
Insert Docklight into the communication link between two serial devices. Monitor and
log the serial communication in both directions. Detect faulty communication
sequences or special error conditions within the monitored communication. Take a
snapshot of the communication when such an error condition has occurred.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Introduction

Dievics 1 Diocklight Tap Davice 2
L]
Docklight PC

2.3 System Requirements

Operating system
e Windows 11, Windows 10, Windows 10 x64, Windows 8, Windows 8 x64,
Windows 7, Windows 7 x64.

Additional requirements

e For RS232 testing or simulation: Minimum one COM port available. Two COM ports
for monitoring communication between two serial devices.

e For low-latency monitoring using Docklight Tap, Docklight Tap Pro or Docklight Tap
485: One USB port.

Additional cables or software drivers may be required for connecting the equipment to
be tested. See the sections on Docklight Tap, Docklight Monitoring Cable RS232 SUB
D9, Standard RS232 Cables and virtual null modem drivers.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

User Interface

User Interface

User Interface

Main Window
]

Docklight's main window is divided into four sections:

1. Toolbar and Status

2. Send Sequences 4. Communication Window

3. Receive Sequences

5. Documentation

1. Toolbar and Status
You can select all main Docklight functions from the Toolbar. The status line below
shows additional information about the communication status and the current settings.

2. Send Sequences

Define, edit and manage your Send Sequences here. Use the arrow symbol or the
Space key to send out the selected sequence. Double click on the blank field at the end
of a list to create a new sequence. A context menu (right mouse button) is available to
cut, copy or paste entire Send Sequences to/from the clipboard. See Editing and
Managing Sequences and Dialog: Edit Send Sequence for more information.

3. Receive Sequences

Define, edit and manage your Receive Sequences here. Double click on the blank field
at the end of a list to create a new sequence. The Receive Sequence list supports the
same reordering and clipboard operations as the Send Sequence list. You can also
copy a Send Sequence to the clipboard and paste it into the Receive Sequence list.
See Editing and Managing Sequences and Dialog: Edit Receive Sequence for more
information.

You can reorder the sequence lists using drag&drop: First, allow reordering the list by

clicking on the small == lock icon in the top left corner. When == unlocked, the list can
be changed by dragging a sequence to a new position with the left mouse button
pressed.

By clicking the |< mark you can minimize the Send/Receive Sequences area.

4. Communication Window

Displays the outgoing and incoming communication of the serial data connection.
Various display options are available for communication data, including ASCII / HEX /
Decimal / Binary display, timestamps, and highlighting (see Options). If serial
communication is stopped, all data from the communications window may be copied to
the clipboard or printed. You may also search for specific sequences using the Find

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

User Interface

Sequence function. See How Serial Data is Processed and Displayed for more
information.

5. Project and Sequence Documentation

Type in additional comments concerning your project, or a specific Send Sequence /
Receive Sequence. Docklight presents sequence-specific documentation when you
choose a Send Sequence or Receive Sequence from the list (2. and 3.). Docklight
switches to the main project documentation when you click on the empty bottom line of
the sequence list, or when you click inside the Communication Window (4.).

To avoid accidental editing, the Documentation Area is locked by defaL_JIt and you need

to enable editing by clicking on the small &= lock icon above it. When = unlocked, you
can edit/copy/paste/delete its contents freely.

By clicking the v mark on the right side you can minimize the documentation area.

3.2 Clipboard - Cut, Copy & Paste
|

Docklight supports Cut/Copy/Paste operations. Clipboard operations are available in the
Main Window - Send Sequences

Main Window - Receive Sequences

Main Window - Communication

Main Window - Documentation

Main Window - Script Editor (Docklight Scripting only)
Dialog: Edit Send Sequence

Dialog: Edit Receive Sequence

Dialog: Find Sequence

Dialog: Send Sequence Parameter

Documentation Area

Keyboard Console

You can cut a serial data sequence from the communication window and create a new
Send or Receive Sequence by pasting it into the appropriate list. Or edit a Send
Sequence, copy a part of this sequence to the clipboard and create a new Receive
Sequence from it by pasting it into the Receive Sequence window.

TIP: Use the right mouse button context menu for Cut/Copy/Paste operations or the
related Keyboard Hotkey.

3.3 Documentation Area
|

Docklight offers documentation areas in the lower right part of the main window and in
the Edit Send Sequence or Edit Receive Sequence dialogs.

You can use these areas to write down additional notes concerning your Docklight
application. E.g., how to use the Send / Receive Sequences and sequence parameters,
or notes on additional test equipment, etc.

The documentation contents are stored and loaded along with all other Docklight project
settings (see saving and loading your project data).

TIP: The documentation areas are simple text boxes without formatting menus or tools.
For formatted documentation including pictures and tables, you can prepare your
documentation in Windows WordPad or Microsoft Word and use copy&paste to add it
to the Docklight documentation area.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Features and Functions

Features and Functions

4.2

Features and Functions

How Serial Data Is Processed and Displayed
|

Docklight handles all serial data in an 8 bit-oriented way. Every sequence of serial data

consists of one or more 8 bit characters. Docklight allows you to

o display the serial data in either ASCII, HEX, Decimal or Binary format

e copy serial data to the clipboard and paste it into a standard text file or a formatted
Microsoft® Word document, or create a Send / Receive Sequence using the data.

¢ print out serial data, user comments and other information

Docklight's communication window shows the current communication on the selected
serial port(s). Docklight distinguishes between two communication channels (channel 1
and channel 2), which represent the incoming and outgoing data in Send/Receive Mode
or the two communication channels being observed in Monitoring Mode. Channel 1 and
channel 2 data are displayed using different colors or fonts, and the communication
data may be printed or stored as a log file in plain text or HTML format.

Besides the serial data, Docklight inserts date/time stamps into the communication
display. By default, a date/time stamp is inserted every time the data flow direction
switches between channel 1 and channel 2, or before a new Send Sequence is
transmitted. There are several options available for inserting additional time stamps. This
is especially useful when monitoring a half-duplex line with only one communication
channel. See Options --> Date/Time Stamps

Docklight is able to process serial data streams containing any ASCII code 0 - 255
decimal. Since there are non-printing control characters (ASCII code < 32) and
different encodings for ASCII code > 127, not all of these characters can be displayed
in the ASCII text window. Nonetheless, all characters will be processed properly by
Docklight and can be displayed in HEX, Decimal or Binary format. Docklight will
process the serial data on any language version of the Windows operating system in
the same way, although the ASCII display might be different. For control characters
(ASCII code < 32), an additional display option is available to display their text
equivalent in the communication window. See Options dialog and Appendix, ASCII
Character Set Tables.

Docklight allows you to suppress all original serial data, if you are running a test where
you do not need to see the actual data, but only the additional evaluations generated
using Receive Sequences. See the Project Settings for Communication Filter.

Editing and Managing Sequences
|

A Docklight project mainly consists of user-defined sequences. These may be either
Send Sequences, which may be transmitted by Docklight itself, or Receive Sequences,
which are used to detect a special message within the incoming serial data.

Sequences are defined using the Edit Send Sequence or Edit Receive Sequence dialog
window. This dialog window is opened

1. by choosing Edit from the context menu available using the right mouse button.

2. by double-clicking on an existing sequence or pressing Ctrl + E with the Send
Sequence or Receive Sequence list selected.

3. when creating a new sequence by double-clicking on the blank field at the end of a
list (or pressing Ctrl + E).

4. when pasting a new sequence into the sequence list.

Docklight supports the use of wildcards (e.g. wildcard "?" as a placeholder for one
arbitrary character) within Receive Sequences and Send Sequences. See the sections

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Features and Functions

sending commands with parameters and checking for sequences with random
characters for details and examples.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

Working with Docklight

5 Working with Docklight

5.1 Testing a Serial Device or a Protocol Implementation

Docklight PC Davice

Preconditions

¢ You need the specification of the protocol to test, e.g. in written form.

¢ The serial device to test should be connected to one of the PC's COM ports. See
section Standard RS232 Cables for details on how to connect two serial devices.

¢ The serial device must be ready to operate.

Performing the test

A) Creating a new project
Create a new Docklight project by selecting the menu File > [New Project

B) Setting the Communication Options

1. Choose the menu Tools > L=I' Project Settings...

2. Choose communication mode Send/Receive

3. At Send/Receive on comm. channel, set the COM Port where your serial device
is connected.

4. Set the baud rate and all other COM Port Settings required.

5. Confirm the settings and close the dialog by clicking the OK button.

C) Defining the Send Sequences to be used

You will probably test your serial device by sending specific sequences, according to
the protocol used by the device, and observe the device's reaction. Perform the
following steps to create your list of sequences:

1. Double click on the last line of the Send Sequences table. The Edit Send Sequence
dialog is displayed (see also Editing and Managing Sequences).

2. Enter a Name for the sequence. The sequence name should be unique for every
Send Sequence defined.

3. Enter the Sequence itself. You may enter the sequence either in ASCII, HEX,
Decimal or Binary format. Switching between the different formats is possible at
any time using the Edit Mode radio buttons.

4. After clicking the OK button the new sequence will be added to the Send Sequence
lists.

Repeat steps 1 - 4 to define the other Send Sequences needed to perform your test.

D) Defining the Receive Sequences used
If you want Docklight to react when receiving specific sequences, you have to define a
list of Receive Sequences.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

1. Double click on the last line of the Receive Sequences table. The dialog Edit
Receive Sequence is displayed. The dialog consist of three parts: Name field,
Sequence field, and Action field.

2. Edit the Name and Sequence fields.

3. Specify an Action to perform after the sequence has been received by Docklight.
There are four types of actions available:
Answer - After receiving the sequence, transmit one of the Send Sequences.
Comment - After receiving the sequence, insert a user-defined comment into the
communication window (and log file, if available).
Trigger - This is an advanced feature described in Catching a specific
sequence...
Stop - After receiving the sequence, Docklight stops communications.

4. Click the OK button to add the new sequence to the list.

Repeat steps 1 - 4 to define the other Receive Sequences you need to perform your
test.

E) Storing the project
Before running the actual test, it is recommended that the communication settings and
sequences defined be stored. This is done using the menu File > = save Project.

F) Running the test
Start Docklight by choosing Run > [¥ Start Communication.

Docklight will open a serial connection according to the parameters specified. It will then
display all incoming and outgoing communication in the communication window. Use the

* | Send button to send one of the defined sequences to the serial device. The on-
screen display of all data transfer allows you to check the device's behavior. All protocol
information can be logged in a text file for further analysis. Please see section Logging
and analyzing a test.

TIP: Using the Documentation Area , you can easily take additional notes, or copy &
paste parts of the communication log for further documentation.

5.2 Simulating a Serial Device

I"_ _______ -
|
|
L - =
|
| Device 1 Device 2
[]

Docklight PC

Preconditions

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

¢ You need the specification of the behavior of the serial device you want to simulate,
e.g. what kind of information is sent back after receiving a certain command.

¢ A second device is connected to a PC COM port, which will communicate with your
simulator.

This second device and its behavior is the actual object of interest. An example could be
a device that periodically checks the status of an UPS (Uninterruptible Power Supply)
using a serial communication protocol. You could use Docklight to simulate basic UPS
behavior and certain UPS problem cases. This is very useful when testing the other
device, because it can be quite difficult to reproduce an alarm condition (like a bad
battery) at the real UPS.

NOTE: The second device may also be a second software application. It is possible to
run both Docklight and the software application on the same PC. Simply use a different
COM port for each of the two applications and connect the two COM ports using a
RS232 null modem cable. You can also use a virtual null modem for this purpose.

Performing the test

A) Creating a new project
Create a new Docklight project by selecting the menu File > [New Project

B) Setting the Communication Options

1. Choose the menu Tools > L=I' Project Settings...

2. Choose communication mode Send/Receive

3. At Send/Receive on comm. channel, set the COM Port where your serial device
is connected.

4. Set the baud rate and all other COM Port Settings required.

5. Confirm the settings and close the dialog by clicking the OK button.

C) Defining the Send Sequences used

Define all the responses of your simulator. Think of responses when the simulated
device is in normal conditions, as well as responses when in fault condition. In the UPS
example mentioned above, a battery failure would be such a problem case that is hard
to reproduce with the original equipment. To test how other equipment reacts to a
battery failure, define the appropriate response sequence your UPS would send in this
case.

NOTE: See Testing a serial device... to learn how to define Send Sequences.

D) Defining the Receive Sequences used

In most cases, your simulated device will not send unrequested data, but will be polled
from the other device. The other device will use a set of predefined command
sequences to request different types of information. Define the command sequences
that must be interpreted by your simulator here.

For every command sequence defined, specify Answer as an action. Choose one of
the sequences defined in C). If you want to use two or more alternative response
sequences, make several copies of the same Receive Sequence, give them a different
name (e.g. "status cmd - answer ok", "status cmd - answer battery failure", "status cmd
- answer mains failure") and assign different Send Sequences as an action. In the
example, you would have three elements in the Receive Sequences list that would
respond to the same command with three different answers. During the test you may
decide which answer should be sent by checking or unchecking the list elements using
the Active column.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

5.3

E) Storing the project
Before running the actual test, it is recommended that the communication settings and
sequences defined be stored. This is done using the menu File > = save Project.

F) Running the test
Start Docklight by choosing Run > [¥ Start Communication.

Docklight will now respond to all commands received from the connected serial device.
The on-screen data transfer display allows you to monitor the communications flow. All
protocol information can be logged to a text file for further analysis. See section
Logging and analyzing a test.

TIP: Using the Documentation Area, you can easily take additional notes, or copy &
paste parts of the communication log for further documentation.

Monitoring Serial Communications Between Two Devices

Device 1 Docklight Tap Device 2
L]
Docklight PC
Preconditions

¢ A Docklight Monitoring Cable, Docklight Tap, or Docklight Tap Pro/485 is required to
tap the RS232 TX signals of both serial devices and feed them into Docklight, while
not interfering with the communications between the devices.

¢ For a Docklight Monitoring Cable setup, two COM ports must be available on your PC
for monitoring. Each port will receive the data from one of the serial devices being
monitored.

¢ Device 1 and Device 2 must be ready to operate.

Performing the test

A) Creating a new project
Create a new Docklight project by selecting the menu File > [New Project

B) Setting the Communication Options

1. Choose the menu Tools > L=I' Project Settings...

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

2. Choose communication mode Monitoring

Alternative | - Using Docklight Monitoring Cable:

3. At Receive Channel 1, set the COM Port where the monitoring signal from serial
device 1 is received. At Receive Channel 2, set the COM port for the second
device.

NOTE: In Docklight Monitoring Mode, all received data from one COM port is re-
sent on the TX channel of the opposite COM port ("Data Forwarding"). This does
not have any effect on Docklight Monitoring Cable setups, since the TX signal is not
connected. But it can be useful for special applications where you need to route the
serial data traffic through Docklight using standard RS232 cabling. If you require a
pure passive monitoring behavior where no TX data appears, you can disable the
"Data Forwarding" using the menu Tools > Expert Options...

Alternative Il - Using Docklight Tap

3. At Receive Channel 1, open the dropdown list, scroll down to the -- USB Taps --
section and choose the first Tap port, e.g. TAPO. At Receive Channel 2, the
second tap port (e.g. TAP1) is selected automatically.

Alternative Il - Using Docklight Tap Pro / Docklight Tap 485:

3. At Receive Channel 1, open the dropdown list, scroll down to the -- USB Taps --
section and choose the first VTP Tap port, e.g. VTPO0. At Receive Channel 2, the
second VTP tap port (e.g. VTP1) is selected automatically.

4. Set the baud rate and all other communication parameters for the protocol being
used.

NOTE: Make sure your PC's serial interfaces port works properly at the baud rate
and for the communication settings used by Device 1 and Device 2. If Device 1
and 2 use a high-speed data transfer protocol, the PC's serial interfaces and the
Docklight software itself might be too slow to receive all data properly.

5. Confirm the settings and close the dialog by clicking the OK button.

C) Defining the Receive Sequences used

Define Receive Sequences, which should be marked in the test protocol or trigger an
action within Docklight. Docklight checks for Receive Sequence on both monitoring
channels, i.e. it does not matter whether the sequences come from serial device 1 or
serial device 2.

NOTE: Since a special monitoring cable is used for this test, all communication between
serial device 1 and serial device 2 will remain unbiased and no additional delays will be
introduced by Docklight itself. This is particularly important when using Docklight for
tracking down timing problems. This means, however, that there is no way to influence
the serial communication between the two devices. While communication mode
Monitoring is selected, it is not possible to use Send Sequences.

D) Storing the project
Before running the actual test, it is recommended to store the communication settings
and sequences defined. This is done using the menu File > E save Project.

E) Running the test

Start Docklight by choosing Run > ¥ Start Communication, then activate the serial
devices 1 and 2 and perform a test run. Docklight will display all communication
between serial device 1 and serial device 2. Docklight uses different colors and font

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

types to make it easy to distinguish between data transmitted by device 1 or device 2.

The colors and font types can be chosen in the Display tab of the Tools > 2
Options... dialog.

TIP: The @ Snapshot Function allows you to locate a rare sequence or error condition
in a communication protocol with a large amount of data.

TIP: See the sections How to Increase the Processing Speed... and How to Obtain Best
Timing Accuracy to learn how to adjust Docklight for applications with high amounts of
data, or increased timing accuracy requirements.

5.4 Catching a Specific Sequence and Taking a Snapshot of the

Communication
|

When monitoring serial communications between two devices, you might want to test for
a rare error and the interesting parts would be just the serial communication before and
after this event. You could look for this situation by logging the test and searching the
log files for the characteristic error sequence. This could mean storing and analyzing
several MB of data when you are actually just looking for a few bytes though, if they
appeared at all. As an alternative, you can use the Snapshot feature as described
below.

Preconditions

¢ Docklight is ready to run a test as described in the previous use cases, e.g.
monitoring serial communications between two devices.

Taking a snapshot

A) Defining a trigger for the snapshot

1. Define the sequence that appears in your error situation as a Receive Sequence.

2. Check the Trigger tab in the "action" part of the Receive Sequence dialog: The
trigger option must be enabled if this is the sequence that you want to track down.

NOTE: Do not forget to disable the trigger option for all other Receive Sequences that
should be ignored in your test so that they do not trigger the snapshot.

B) Creating a snapshot

Click on the & Snapshot button of the toolbar. Docklight will start communications, but
will not display anything in the communication window. If the trigger sequence is
detected, Docklight will display communication data before and after the trigger event.
Further data is processed, until the trigger sequence is located roughly in the middle of
the communication window. Docklight will then stop communication and position the
cursor at the trigger sequence.

5.5 Logging and Analyzing a Test
|

Preconditions

¢ Docklight is ready to run a test as described in the previous use cases, e.g.
Testing a serial device or a protocol implementation

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

Logging the test

Click on the A Start Logging button on the main toolbar.
A dialog window will open for choosing log file settings.

For each representation (ASCII, HEX, ...), a separate log file may be created. Choose
at least one representation. Log files will have a ".txt", ".htm" or ".rtf" file extension,
depending on your file format choice. Docklight also adds the representation type to the
file name to distinguish the different log files. E.g. if the user specifies "Test1" as the
base log file name, the plain text ASCII file will be named "Test1_asc.txt", whereas an
RTF HEX log file will be named "Test1_hex.rtf".

Confirm your log file settings and start logging by clicking the OK button.

To stop logging and close the log file(s), click the) Stop Logging button on the main
toolbar. Unless the log file(s) have been closed, it is not possible to view their entire
contents.

5.6 Checking for Sequences With Random Characters (Receive
Sequence Wildcards)

Many serial devices support a set of commands to transmit measurement data and other
related information. In common text-based protocols the response from the serial device
consists of a fixed part (e.g. "temperature="), and a variable part, which is the actual
value (e.g "65F"). To detect all these responses correctly in the serial data stream, you
can define Receive Sequences containing wildcards.

Take, for example, the following situation: A serial device measures the temperature and
periodically sends the actual reading. Docklight shows the following output:
07/30/2012 10:20:08.022 [RX] - temperature=82F<CR>
07/30/2012 10:22:10.558 [RX] - temperature=85F<CR>
07/30/2012 10:24:12.087 [RX] - temperature=93F<CR>
07/30/2012 10:26:14.891 [RX] - temperature=102F<CR>
Defining an individual Receive Sequence for every temperature value possible would not
be a practical option. Instead you would define one Receive Sequence using wildcards.
For example:

tlelmlple|r|altjulrle[=]|?|#[#|F|r

("r" is the terminating <CR> Carriage Return character)

This ReceiveSequence would trigger on any of the temperature strings listed above. It
allows a 1-3 digit value for the temperature (i.e. from "0" to "999"). The following step-
by-step example describes how to define the above sequence. See also the additional
remarks at the end of this section for some extra information on # wildcards.

NOTE: See Calculating and Validating Checksums on how to receive and validate
checksum data, e.g. CRCs. There are no wildcards required for checksum areas.
Instead, use some default character values, e.g. "00 00" in HEX representation.

Preconditions

¢ Docklight is ready to run a test as described in the previous use cases, e.g. testing a
serial device or a protocol implementation.
e The serial device (the temperature device in our example) is operating.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

Using Receive Sequences with wildcards

A) Preparing the project
Create a new Docklight project and set up all communication parameters.

B) Defining the Receive Sequences used

1. Create a new Receive Sequence. Enter a Name for the sequence.

2. Enter the fixed part of your expected answer in the Sequence section. For our
example you would enter the following sequence in ASCII mode:
tlelmlplefrfaltjulr|e]=

3. Open the popup / context menu using the right mouse button, and choose
Wildcard '?' (matches one character) to insert the first wildcard at the cursor
position. Add two '# wildcards using the popup menu Wildcard '# (matches zero
or one character). The sequence now looks like this:
tlelm|plel|rlaltiulr|e]|=]|7|#]|#

4. Enter the fixed tail of our temperature string, which is a letter 'F' and the terminating
<CR> character. You can use the default control character shortcut Ctrl+Enter to
enter the <CR> / ASCII code 13. The sequence is now:
tlelm|ple|rfaltju|r{e|=]|?|#|#|F|r

5. Specify an Action to perform after a temperature reading has been detected.

6. Click OK to add the new sequence to the Receive Sequence list.

NOTE: To distinguish the wildcards ?' and '# from the regular question mark or number
sign characters (decimal code 63 / 35), the wildcards are shown on a different
background color within the sequence editor.

C) Running the test
Start Docklight by choosing Run > [Start Communication.

Docklight will now detect any temperature reading and perform the specified action.

Additional notes on '#' wildcards

1. '# wildcards at the end of a Receive Sequence have no effect. The Receive
Sequence "HelloW orld####" will behave like a Receive Sequence "HelloWorld".

2. A "match inside a match" is not returned: If a Receive Sequence

"Hello#HHEHH W orld" is defined, and the incoming data is "Hello1Hello2World", the
Receive Sequence detected is "Hello1Hello2World", not "Hello2World".

Receive Sequence comment macros

Macro keywords can be used in the Edit Receive Sequence > 3 - Action > Comment
text box, to create Docklight comment texts with dynamic data, e.g. the actual data

received.

Macro Is Replaced By

%_S BELL signal. Produce a 'beep sound', depending on your Windows
sound scheme.

% _L Line break

%_T Time stamp for the data received

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

%_C Docklight channel no. / data direction (1 or 2) for the data received

%_X The channel name or channel alias that corresponds to the data
direction %_C.
E.g. IIRXII’ ll'I'xll Or IICOM5II.

%_| Receive Sequence List Index, see the Dialog: Edit Receive Sequence

%_N Receive Sequence Name

%_A The actual data that triggered this Receive Sequence. Use ASCII
representation

% _ H Same as %_A, but in HEX representation

%_D Same as %_A, but in Decimal representation

%_B Same as %_A, but in Binary representation

%_A(1,4) |Extended syntax:
Insert only the first 4 characters of this Receive Sequence (start with
Character No. 1, sequence length = 4).

%_H(3,- Extended Syntax
1) Insert everything from the third character until the end of the sequence
(length = -1). Use HEX representation.

Example:
For a Receive Sequence as described above (t|e|m|ple|r|a|tju|r|e|=]"?
| #|#| F|r), you could define the folowing comment text:

New Temp = %_L %_A(13, -3) °F
Docklight output could then look like this:

10/30/2012 10:20:08.022 [RX] - temperature=82F<CR>
New Temp =

82 °F
10/30/2012 10:22:10.558 [RX] - temperature=85F<CR>
New Temp =

85 °F
10/30/2012 10:24:12.087 [RX] - temperature=93F<CR>
New Temp =

93 °F

5.7 Saving and Loading Your Project Data
|

The project data includes:

e Send Sequences

e Receive Sequences

¢ Additional Project Settings: communication mode, COM ports used, COM port settings
(baud rate, parity, ...)

e Documentation contents

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

The project is saved in a Docklight project file (.ptp file) using the menu File > &l Save
Project or File > Save Project As...

It is generally recommended to save your project before starting a test run.
NOTE: Saving your project only stores the project's sequences, settings, and

Documentation Area data. If you want to save a log of the communication during a test
run, see section logging and analyzing a test.

Loading a project is done using the File > = Open Project... menu.

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Working with Docklight (Advanced)

Working with Docklight (Advanced)

6.1 Sending Commands With Parameters (Send Sequence
Wildcards)

When testing a serial device, the device will most likely support a number of commands
that include a parameter.

Example: A digital camera supports a command to set the exposure time. For setting the
exposure time to 25 milliseconds, you need to send the following sequence:
e|x|p| 10]2|5|r ("r"isaterminating <CR> Carriage Return character)

To avoid defining a new Send Sequence for every exposure time you want to try, you
can use a Send Sequence with wildcards instead:
e[x[pl [?7]7]7]r

The following step-by-step example describes how to define an exposure time command
with a parameter and use a different exposure value each time the sequence is sent.

Preconditions

¢ Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

Performing the test using commands with parameters

A) Preparing the project
Create a new Docklight project and set up all communication parameters.

B) Defining the commands used

1. Create a new Send Sequence. Enter a Name for the sequence.

2. Enter the fixed part of your command in the Sequence section. For our example
you would enter the following sequence in ASCIl mode:
e[x[pl| |

3. Now open the context menu using the right mouse button, and choose Wildcard
'?' (matches one character) F7 to insert one wildcard at the cursor position. In
our example we would have to repeat this until there are three '?' wildcards for our
three-digit exposure time. The sequence now looks like this:
elx|pl 1?71?7]7

4. Now add the terminating <CR> character, using the default control character
shortcut Ctri+Enter. The example sequence now is
e|x[p| [?]?]7]r

5. Click OK to add the new sequence to the Send Sequence list.

Repeat steps 1 - 5 to define other commands needed to perform your test.

NOTE: To distinguish a '?" wildcard from a question mark ASCII character (decimal
code 63), the wildcard is shown on a different background color within the sequence
editor.

C) Sending a command to the serial device

1. Use the _>| Send button to open the serial communication port and send one
command to the serial device.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

2. The communication pauses and the Send Sequence Parameter dialog pops up,
allowing you to enter the parameter value. In our example, an exposure time, e.g.
ll025ll.

3. Confirm by pressing Enter. The sequence is now sent to the serial device.

It is possible to define commands with several parameters, using several wildcard areas
within one sequence. The Send Sequence Parameter dialog will then appear several
times before sending out a sequence.

NOTE: If you are using Wildcard '?', you must provide exactly one character for each
'?" when sending the sequence. For variable-length parameters use Wildcard
'‘# (matches zero or one character) F8.

NOTE: You cannot use a Send Sequence with wildcards as an automatic answer for a
Receive Sequence (see Action).

NOTE: If your Send Sequence requires a checksum, you can define it as described in
Calculating and Validating Checksums. The checksum is calculated after the
wildcard/parameter area has been filled with the actual data, then the resulting
sequence data is handed over to the send queue.

6.2 How to Increase the Processing Speed and Avoid "Input

Buffer Overflow" Messages
|

When monitoring serial communications between two devices, Docklight cannot control
the amount of incoming data. Since Docklight applies a number of formatting and
conversion rules on the serial data, only a limited number of bytes per seconds can be
processed. There are numerous factors that determine the processing speed, e.g. the
PC and COM devices used, the Display Settings, and the Receive Sequence Actions
defined. It is therefore not possible to specify any typical data rates.

The most time-consuming task for Docklight is the colors&font formatting applied by
default (see the Docklight Display Options). If Docklight cannot keep up with formatting
the incoming data, it will automatically switch to the simpler Plain Text Mode.

If this is still not fast enough to handle the incoming data, Docklight will add the following
message in the Communication Window output and log files.

DOCKLIGHT reports: Input buffer overflow on COM1l

TIP: Search for this message using the # Find Sequence in Communication
Window... (Ctrl + F) function.

If you are experiencing the above behavior, Docklight offers you several ways to
increase the data throughput.

1. Simplify the display output:
- Deactivate all unneeded Display Modes in the P Options... dialog
- Use Plain Text Mode right from the start (see the automatic switch behavior
described above).
- If you are using ASCII mode, disable the Control Characters Description option

2. Log the communication data to a plain text file instead of using the communication
window(s):
- Use the "plain text" Log File Format
- Create only a log file for the Representation (ASCII / HEX / Decimal / Binary) you
actually need

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

- Disable the communication windows while logging, using the High Speed Logging
option

3. Use the Communication Filter from the =I' Project Settings... dialog, and disable
the original serial data for one or both communication directions. This is especially
useful if you actually know what you are looking for and can define one or several
Receive Sequences for this pieces of data. These Receive Sequences can print a
comment each time the sequence appears in the data stream so you still know what
has happened, even if the original serial data is not displayed by Docklight.

6.3 How to Obtain Best Timing Accuracy

Many RS232 monitoring applications — including Docklight — can only provide limited
accuracy when it comes to time tagging the serial data. As a result, data from the two
different communication directions can be displayed in chronologically incorrect order,
or several telegrams from one communication direction can appear as one chunk of
data.

This behavior is not caused by poor programming, but is rather characteristic for a
PC/Windows system, and the various hardware and software layers involved.
Unspecified delays and timing inaccuracies can be introduced by:

e The COM device’s chipset, e.g. the internal FIFO (First-In-First-Out) data buffer.
e The USB bus transfer (for USB to Serial converters).

¢ The serial device driver for Windows.

e The task/process scheduling in a multitasking operating system like Windows.

¢ The accuracy of the date/time provider.

Docklight comes with a very accurate date/time provider with milliseconds granularity,
but it still needs to accept the restrictions from the hardware and software environment
around it.

Here is what you can do to minimize additional delays and inaccuracies and achieve a
typical time tagging accuracy of 5 milliseconds or better:

1. Get our Docklight Tap for lowest USB-related latency times. Or use on-board
RS232 ports, if still available on your PC.

2. Choose External / High Priority Process Mode in the Tools > Expert Options...
dialog.

3. When monitoring high amounts of data, use the recommendations from the
previous section How to Increase the Processing Speed... to avoid input buffer
overflows and that the computer become irresponsive because of high CPU usage.

NOTE: The Expert Options... recommended above will change the overall system
balance and must be used with care. Best results can be achieved only when Docklight
is Run as administrator. Please make sure you understood the remarks and warning
in the documentation.

4. As an alternative to the above 1.-3.: Use our Docklight Tap Pro or Docklight Tap
485 accessories which use their own Embedded time provider and eliminate PC-
based inaccuracies altogether.

6.4 Calculating and Validating Checksums
|

Many communication protocols include additional checksum fields to ensure data
integrity and detect transmission errors. A common algorithm is the CRC (Cyclic

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Redundancy Code), which is used in different variations for different protocols. The
following step-by-step example describes how to set up on-the-fly checksum calculation
for a Send Sequence, and how to enable automatic validation of a checksum area
within a Receive Sequence.

TIP: For a working example to address a Modbus slave device, see the tutorial Modbus
RTU With CRC checksum.

Preconditions

You know the checksum specification for the protocol messages:

¢ Which area of the sequence data is guarded by a checksum?

e Where is the checksum located? (Usually at the end of the sequence.)

¢ What checksum algorithm should be used? (Most likely one of the standard CRC
types, or a simple MOD256 sum.)

Using Send Sequences with automatic checksum calculation
A) Defining a Send Sequence that includes a checksum

1. Create a new Send Sequence. Enter a Name for the sequence.

2. Enter the Sequence part of your message in the Sequence section. For example,
here we use a very simple HEX message as our sequence:
01]102|03|04]|??

Use the context menu via right mouse button or F7 to create the ?? wildcard.

NOTE: See also the Send Sequence Parameter section for more information on
wildcards and parameters.

3. Now add one additional 00 value as a placeholder for the checksum.
01]102|03|04]|7??]|00

NOTE: In a Send Sequence, you can use any character code from 00-FF as a
placeholder at the positions where the calculated checksum should be inserted
later. This is different from the way it works in a Receive Sequence, where you use
?? wildcards. See the Receive Sequence example below.

4. Go to the Additional Settings | Checksum tab and define the checksum. For
example, here we chose to use MOD256 from the dropdown list.

NOTE: The text field for Checksum allows comments. Everything behind a #
character is just a comment. You can add your own comments to describe what
this checksum is about.

5. Click OK to add the new sequence to the Send Sequence list.

B) Performing the test

parameter value, e.g. 05.

Before sending the data, Docklight calculates the actual MOD256 checksum. The result
goes to the specified checksum position. For MOD256 this is the last character position
by default, which means that the 00 placeholder is overwritten with the checksum resuilt.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

If we use 05 as a parameter when sending the sequence, the data sent by Docklight will
look like this:

18.06.2015 11:07:23.251 [TX] - 01 02 03 04 05 OF

The placeholder has been replaced by the sum over the message bytes:
1+2+3+4+5=15o0r Hex OF.

Using Receive Sequences with automatic checksum validation

A) Defining a Receive Sequence with checksum

1. Create a new Receive Sequence. Enter a Name for the sequence.

2. Enter the Sequence data, including a wildcard area for both a random payload
byte, plus a wildcard for the checksum. We use the same telegram as in the above
Send Sequence example:
01]02|03| 04| ??] 00.

3. Go to the Action | Comment tab and enter the following text: Correct checksum
4. Go to the Checksum tab and pick MOD256 in the left dropdown list.

5. Keep the Detect Checksum OK option. It means that the Receive Sequence is
only triggered if the MOD256 checksum byte in the received data is correct.

5. Click OK to confirm the changes

B) Running the test

6. Start communications and send some data telegrams to your Docklight application /
COM port.

The Communication Window output could look like this:

15.02.2016 17:43:28.072 [RX] - 01 02 03 04 05 OF Correct
checksum

15.02.2016 17:43:31.870 [RX] - 01 02 03 04 OF 19 Correct
checksum

15.02.2016 17:43:35.833 [RX] - 01 02 03 04 10 1A Correct
checksum

NOTE: This example showed how to define a Receive Sequence that is triggered by
data telegrams with correct checksum only. It is also possible to do the opposite:
detecting a checksum error. Go to the Checksum tab and change the option Detect
Checksum OK to Checksum Wrong.

6.5 Controlling and Monitoring RS232 Handshake Signals
|

The Docklight project settings for Flow Control support offer a Manual Mode that allows
you to set or reset the RTS and DTR signals manually by clicking on the corresponding
indicator. The following section describes how to use the Function Character "!" (F11
key) to change the RTS and DTR signals temporarily within a Send Sequence, or detect
changes for the CTS, DSR, DCD or Rl lines using a Receive Sequence.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Preconditions

e Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

¢ Flow Control Support is set to "Manual" in the project settings.

¢ The Docklight project already contains one or several Send Sequences, but there is
an additional requirement for changing RTS / DTR signals while sending.

Implementing RTS/DTR signal changes

For our example we assume that we are using a RS485 converter which requires
RS485 Transceiver Control, but uses the DTR signal instead of RTS for switching
between "transmit" and "receive" mode. We further assume there is already a "Test"
Send Sequence which looks like this in ASCII mode:

Tle|s]|t

A) Modifying the existing Send Sequence

1. Open the Edit Send Sequence dialog.
Switch the Edit Mode to Decimal. Our "Test" example looks like this in decimal
mode:
084|101 | 115] 116
3. Insert an RTS/DTR function character at the beginning: Press F11, or open the
context menu using the right mouse button and choose Function character
'I" (RTS and DTR signals) . The example sequence now reads:
!1084|101]|115] 116
4. Add the new RTS/DTR state as a decimal parameter value (see below). In our
example we need the DTR signal set to high. We choose "002" as the parameter
value, so the sequence is now:
1 1002|084]101]|115]| 116
5. Add a RTS/DTR function character at the end of the sequence, and use "000" as
parameter value to reset the DTR signal low. The sequence data is now:
1 1002|084]101]115|116| ! | 000
6. Click OK to confirm the changes

NOTE: To distinguish a " RTS/DTR function character from a exclamation mark ASCII
character (decimal code 33), the RTS/DTR function character is shown on a different
background color by the sequence editor.

NOTE: The character after a RTS/DTR function character is used to set the RTS / DTR
signals and is not sent to the serial device (see parameter values below).

B) Sending the data with additional DTR control

1. Send the test sequence using the > | Send button.

Docklight will now set the DTR signal to high, send the ASCII sequence "Test" and then
reset DTR.

NOTE: The RTS/DTR indicators will indicate any changes of the RTS or DTR state.
However, in the above example the DTR is set and reset very quickly, so the DTR
indicator will probably not give any visual feedback. If you want to actually "see" the
DTR behavior, try introducing a small inter-character delay.

Function character '!' (F11) - setting RTS and DTR

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Character Value RTS DTR
(Decimal Mode)

000 Low Low
001 High Low
002 Low High
003 High High

Temporary parity changes / 9 bit applications

Some protocols and applications require a 9th data bit, e.g. for device addressing on a
bus. The only way to talk to such devices using a standard UART with maximum 8 data
bits is to use serial settings that include a parity bit and change this parity bit
temporarily within a Send Sequence. The function character 'I' supports additional
parameter values for this purpose:

Character Value Parity

(Decimal Mode)

016 No parity

032 QOdd parity

048 Even parity

064 Mark. Set parity bit to logic '1'
080 Space. Set parity bit to logic '0'

The new parity settings are applied starting with the next regular character, both on the
TX and the RX side. The parity is switched back to the original Communication Settings
after the Send Sequence has been completely transmitted.

NOTE: The most useful parameters for this function character are the "Mark" and
"Space" settings, because they allow you to set the parity bit to a defined value that
effectively serves as a 9th data bit.

NOTE: Itis recommended to set the Parity Error Character to "(ignore)", so you can
evaluate incoming data in both cases, 9th bit = high and 9th bit = low.

TIP: See also the SwitchParityDemo.ptp sample project (folder
Extras\ParitySwitch_9BitProtocols in your \Samples directory).

Function character '!I' (F11) - detecting handshake signal changes
(CTS, DSR, DCD or RI)

Docklight Scripting detects changes of the handshake signals CTS, DSR, DCD or RI,
but in normal operation these changes are not visible in the Docklight Communication
Window (similar to a Break State).

Using the function character "' you can make these changes visible, and/or define an
action after detecting such changes. The function character 'I' supports the following
parameter values for this purpose:

Character Value Handshake Signal
(Decimal Mode)

001 CTS = High

002 DSR = High

004 DCD = High

008 RI (Ring Indicator) = High

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Example Receive Sequence definitions in Decimal Edit Mode:

Receive Sequence Description
(Decimal Mode)

! | 001 triggers when CTS=high, all other signals low
I] 006 triggers when CTS=low, DSR=high, DCD=high, Rl=low
L] 2?7 triggers on any change of the status lines

For the following example we assume that Docklight is ready to run a test as described
in testing a serial device or a protocol implementation and Flow Control Support is set to
"Manual" in the project settings.

A) Create a new Receive Sequence for detecting handshake signal changes.

1. Open the Edit Receive Sequence dialog.

2. Switch the Edit Mode to Decimal.

3. Insert a 'signals' function character at the beginning: Press F11, or open the
context menu using the right mouse button and choose Function character
'I' (CTS/DSR/DCD/RI changes) .

4. Add the handshake state as a decimal parameter value (see above). In our example
we want to detect when CTS is high, while all other signals are low. This means we
need to enter "001" as the parameter value, so the sequence is now:

| 001
5. Specifiy a Comment for this sequence, e.g. "[CTS = high, DSR/DCD/RI = low]"
6. Click OK to confirm the new sequence

B) Start the test and confirm that Docklight now detects when the CTS line changes
from low to high.

Function character '*' (F12) - bitwise comparisons
The Function Character "' can be added by pressing F12 in the Edit Receive Sequence

dialog. After the ‘¥ character, two additional character values specify which bits to
check (mask) and which values to expect for these bits (value).

Receive Sequence | Description
(HEX Mode)

M| mask | value Is a match for the next character received, when the following is
true:

((nextCharacterReceived XOR value) AND mask) = 0

In other words - the ‘¥ character picks only the bits marked in
mask and compares them with the corresponding bits in value.
See below for examples.

Al OF | 05 Is a match, when for the next character the following is true:
Bit0 =1

Bit1=0

Bit2=1

Bit3=0

Bit 4-7 = (don’t care)

1|7 04| 04 This Receive Sequence triggers when the new handshake

signal state says
DCD = High. All other handshake signals can have any state.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

NOTE: This Receive Sequence will trigger for any change of
any handshake signal, in case DCD still remains High.

TIP: This extension is also demonstrated in the Docklight Scripting example project
Docklight_TapPro_Demo.ptp (see the folder Extras\TapPro in your \Samples
directory)

6.6 Creating and Detecting Inter-Character Delays
|

Some applications, especially microcontroller applications without a dedicated serial
data buffer, require an extra delay between individual characters to avoid buffer
overflows and allow the microcontroller to execute other code.

In Docklight you can implement inter-character delays by inserting one or several
Function Characters '&' (F9 key) in your Send Sequence data, followed by a
character specifying the desired delay time from 0.01 seconds to 2.55 seconds.

You can also use the '&' delay character inside a Receive Sequence to specify a
minimum silent time where no further characters should be received. This is useful for
detecting pauses in the data stream that indicate the beginning/end of a telegram,
especially for protocols where there is no dedicated start or end character.

Preconditions

¢ Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

¢ The Docklight project already contains one or several Send Sequences, but an
additional delay at certain character positions is required.

Sending Data With Inter-Character Delays

As an example, we use a microcontroller application which understands a "get"
command. In ASCII Mode, the Send Sequence would be:
glel|t|r ("r" is a terminating <CR> Carriage Return character)

The following steps describe how to add an additional delay of 20 milliseconds between
each character and avoid buffer overflows on the microcontroller side.

A) Modifying the existing Send Sequence

1. Open the Edit Send Sequence dialog.

2. Switch Edit Mode to Decimal. Our "get" example looks like this in decimal mode:
103 101|116 | 013

3. Insert a delay function character between the first and the second character: Press
F9, or open the context menu using the right mouse button, and choose
Function character '&' (delay... . The example sequence now reads:
103 | & | 101|116 013

4. Add the delay time: In this example a decimal value of 002 (20 milliseconds) after
the "&" function character is added. The sequence is now:
103 | & | 002|101 | 116] 013

5. Insert a delay between all other inter-character positions: the delay character and
delay time can be copied using Ctrl+C, and pasted in the desired positions using
Ctri+V. Our example sequence finally reads:
103| & | 002|101 | & | 002|116| & | 002|013
Or back in ASCII Mode:
gl&|Ofef&|O[t]&|O]r

6. Click OK to confirm the changes

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

NOTE: To distinguish a '&' delay character from a regular ampersand ASCII character
(decimal code 38), the delay function character is shown on a different background
color by the sequence editor.

NOTE: The character after a delay function character is interpreted as the delay time
and is not sent to the serial device.

B) Sending the command to the microcontroller application

1. Send the modified Send Sequences using the # | Send button.

Docklight will send out the same data as before, but leave additional timing gaps as
specified by the delay characters. The communication display will show the same
communication data as without the delays.

NOTE: Docklight's accuracy for delay timing is limited because it has no control over
the UART's internal TX FIFO buffer. The specified delay times for the '&' delay function
character are minimum values. Measured delay values are significantly higher, because
Docklight always waits a minimum time to ensure the UART TX FIFO buffer is empty.
Also, the display format and the additional performance settings affects the timing. If
you have more specific requirements on Send Sequence timing and need to control the
Docklight "wait time" as well as your UART FIFO settings, please contact our e-mail

support.

Pause detection using a Receive Sequence

Docklight already offers the Pause detection... display option to insert additional time
stamps or line breaks after communication pauses.

If you require not only visual formatting, but need to define actions after a minimum
pause, or simply make sure the Receive Sequence detection algorithm starts anew after
a pause, you can add the delay function character to your Receive Sequence
definition.

In most applications the best place for the delay function character will be at the
beginning of the Receive Sequence, before the actual receive data characters. You can
also create a Receive Sequence that contains a delay/pause definition only, and no
actual serial data. This can be very useful for implementing timing constraints, e.g.
resetting the telegram detection after a pause occurred.

6.7 Setting and Detecting a "Break" State
|

Some serial application protocols (e.g. LIN) make use of the so-called Break state for
synchronization purposes. Docklight Scripting supports sending a "break" within a
Send Sequence and detecting a "break" state using a Receive Sequence definition.
"break" signals are added to your sequence definition by inserting a Function
Character '%' (F10 key). A Docklight "break” signal has a minimum length of 15 *
<nominal bit length>.

Preconditions

¢ Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

¢ The Docklight project already contains one or several Send Sequences, but signalling
or detecting a "break" state is also required.

Sending a "Break" state

We assume there is already a "Test" Send Sequence which looks like this in ASCII
mode:
Tle|s]|t

1. Open the Edit Send Sequence dialog.

2. Insert a "Break" function character at the beginning: Press F10, or open the
context menu using the right mouse button, and choose Function character "%’
(break signal) . The example sequence now reads:

% |Tlel|ls|t
Click OK to confirm the changes

Send the test sequence using the > | Send button.

The TX line will go to Space (logical 0) for at least 15 bit durations, then the "Test"
ASCII sequence will be transmitted. The "break” character does not appear in the
communication window display.

Detecting a "Break" state

Received "break" signals are not displayed in the communication window, because they
are not part of the actual data sequence. Nonetheless, it is possible to define a Receive
Sequence including a "break" function character.

1. Create a new Receive Sequence. Enter a Name for the sequence.

2. Add a Function character '%" (break signal) for the Sequence data.

3. Enter a Receive Sequence Action, for example printing the comment "BREAK
detected"

4. Click OK to confirm the changes

5. Start communications.

Docklight will now add BREAK detected to the communication window display each
time a break signal is detected.

NOTE: After detecting a break signal, an additional <NUL> character (decimal code 0)
may appear in the received data stream. This behavior cannot be controlled by
Docklight, it depends on how the serial UART of your PC's COM port interpretes the
break state.

NOTE: If you need to implement a Receive Sequence that checks for a break signal
followed by additional data, keep in mind that Docklight cannot tell the exact position of
the break signal within the data stream. The break signal will sometimes show up earlier
in the data stream, but never later than the actual position. To define a Receive
Sequence that safely triggers on break + specific data, you can use the following
workaround: Insert some '# (zero or one character) wildcards between the break
character and the additional data. The resulting Receive Sequence could look like this:
% |#|#|#|#|H#H|#|#H|#|T|e|s|t

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

Examples and Tutorials

7 Examples and Tutorials

This chapter describes two sample projects that demonstrate some of Docklight's basic
functions. The corresponding Docklight project files (.ptp files) can be found in the
\Samples folder within the Docklight installation directory (e.g. C:\Program
Files\FuH\Docklight V2.3\Samples).

TIP: The \Samples folder can also be reached via the Docklight Welcome screen
(menu Help > Welcome Screen and Examples...).

NOTE: If you are logged on with a restricted user account, you will not have permission
to make any changes in the program files directory. In this case, saving a project file or
any other data into the \Samples folder will produce an error.

NOTE: For additional sample projects and Application Notes, see also our online
resources at https://docklight.de/examples/.

7.1 Testing a Modem - Sample Project: ModemDiagnostics.ptp
|

The Docklight project ModemDiagnostics.ptp can be used to perform a modem check.
A set of modem diagnostic commands are defined in the Send Sequences list.

This is a simple example for Testing a serial device or a protocol implementation. The
sample project uses the communication settings listed below. This should work for most
standard modems.

Communication Mode Send/Receive
COM Port Settings 9600 Baud, No parity, 8 Data Bits, 1 Stop Bit

Getting started

¢ Use the Windows Device Manager to find out which COM Port is a modem device.
This demo project may be used with any AT-compatible modem available on your PC,
e.g. a built-in notebook modem, or a GSM or Bluetooth modem driver than can be
accessed through a virtual COM port.

TIP: For a simple test without specialized hardware, add your mobile phone as
Bluetooth Device on your Windows PC. Then find your phone in the Windows
Devices and Printers list. Right-click on it, choose Properties and go to the
Hardware tab. In the Device Functions list it should mention the modem related
COM Ports.

¢ Go to the E=I' Project Settings... dialog and make sure you have selected the same
COM Port for Send/Receive on comm. channel.

e Press the ' F Start Communication button in the toolbar.

¢ Try sending any of the predefined modem commands by pressing the * | send

button

You should now receive a response from your modem, e.g. "OK" if your command was
accepted, a model identification number, etc. The response will vary with the modem
model.

After sending several sequences, the Docklight communication window could look like
this:

07.02.2013 18:17:54.083 [TX] - ATQOV1IEO<CR><LE>

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://docklight.de/examples/

Examples and Tutorials

07.02.2013 18:17:54.107 [RX] - ATQOVIEO<CR><LF>
<CR><LF>
OK<CR><LF>

07.02.2013 18:18:00.511 [TX] - ATI2<CR><LF>

07.02.2013 18:18:00.747 [RX] - <CR><LF>
V 11.10<CR><LE>

13-05-11<CR><LF>

RM-721<CR><LF>

(c) Nokia <CR><LEF>

<CR><LF>

OK<CR><LF>

07.02.2013 18:18:01.393 [TX] - ATI3<CR><LF>
07.02.2013 18:18:01.421 [RX] - <CR>LF>
Nokia C2-01<CR><LE>

<CR><LFEF>
OK<CR><LEF>

Further Information

The Send Sequences list includes the following standard AT modem commands:

Send Sequence Description / Modem Response

ATQOV1EQD Initializes the query.

AT+GMM Model identification (ITU V.250 recommendation is not
supported by all modems).

AT+FCLASS=" Fax classes supported by the modem, if any.

ATHCLS=" Shows whether the modem supports the Rockwell voice
command set.

ATl<n> Displays manufacturer's information for <n> = 1 through 7.
This provides information such as the port speed, the result
of a checksum test, and the model information. Check the
manufacturer's documentation for the expected results.

The \Samples folder also contains a log file ModemDiagnostics_Logfile_asc.txt. It
shows a test run where the above Send Sequences were sent to a real modem.

7.2 Reacting to a Receive Sequence - Sample Project:
PingPong.ptp

The Docklight project PingPong.ptp is a simple example for how to define and use
Receive Sequences.

Getting started

¢ Go to the E=I' Project Settings... dialog and choose a COM port.
¢ Apply a simple loopback to this COM port: Connect Pin 2 (RX) with Pin 3 (TX). See
RS232 SUB D9 Pinout.

Communication is started and the Send Sequence is transmitted. It will of course be
instantly received on the COM port's RX line.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

Docklight will detect the incoming data as being one of the defined Receive Sequences.
It will then perform the action predefined for this event, which is sending out another
sequence. As a result, Docklight will send out alternating Send Sequences - "Ping" and
"Pong".

e Use the ‘B Stop communication button to end the demo.

The Docklight communication display should look similar to this:

3/8/2009 16:25:44.201 [TX] - ----o0 Ping
3/8/2009 16:25:44.216 [RX] - —----0 Ping "Ping" received
3/8/2009 16:25:44.218 [TX] - o-—--- Pong
3/8/2009 16:25:44.233 [RX] - o---- Pong "Pong" received
3/8/2009 16:25:44.236 [TX] - ----o0 Ping
3/8/2009 16:25:44.251 [RX] - —----0 Ping "Ping" received
3/8/2009 16:25:44.254 [TX] - o-—--- Pong
3/8/2009 16:25:44.268 [RX] - o---- Pong "Pong" received
3/8/2009 16:25:44.271 [TX] - ----0 Ping
3/8/2009 16:25:44.286 [RX] - —----0 Ping "Ping" received
3/8/2009 16:25:44.289 [TX] - o---- Pong
3/8/2009 16:25:44.303 [RX] - o---- Pong "Pong" received
3/8/2009 16:25:44.307 [TX] - ----o0 Ping
3/8/2009 16:25:44.322 [RX] - —----0 Ping "Ping" received
3/8/2009 16:25:44.324 [TX] - o-—--- Pong

See also the corresponding log files in the \Samples folder
(PingPong_Lodfile_asc.htm and PingPong_Logfile_hex.htm).

Further Information

This demo project can also be run in three alternative configurations:

1. Run two Docklight applications on the same PC using different COM ports. The two
COM ports are connected using a simple null modem cable.

2. Instead of two RS232 COM ports and a null modem cable you can use a virtual null
modem.

3. Use two PCs and run Docklight on each PC. Connect the two PCs using a simple
null modem cable.

7.3 Modbus RTU With CRC checksum - Sample Project:
ModbusRtuCrc.ptp

The Docklight project file ModbusRtuCrc.ptp demonstrates how to automatically
calculate the CRC value required to send a valid Modbus RTU frame.

The project file uses the communication settings listed below, according to the Modbus
implementation class "Basic".

Communication Mode Send/Receive
Send/Receive on comm. channel JCOM1
COM Port Settings 19200 Baud, Even parity, 8 Data Bits, 1 Stop Bit

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

Getting started

¢ Open the project file ModbusRtuCrc.ptp (menu = Open Project ...). The file is
located in the \Samples folder.

¢ Connect the PC's COM port to your Modbus network. Open the L=I' Project
Settings... dialog and make sure you have selected the correct COM Port for
Send/Receive on comm. channel.

Sequence list
¢ Enter a slave number in the Send Sequence Parameter dialog, e.g. "01" for
addressing slave no. 1.

After sending "Read Input Register" commands to slaves 1 - 4, the communication

window could look like this:

23.09.2019 07:04:56.170
23.09.2019 07:04:56.282
Detected Modbus Frame =
SlavelD=01
FunctionCode=04
Addr/Data=02 FF FF
CRC=B8 80

Input Register Answer:

23.09.2019 07:05:21.761
23.09.2019 07:05:21.873
Detected Modbus Frame =
SlaveID=02
FunctionCode=04
Addr/Data=02 7F 58
CRC=DC FA

Input Register Answer:

23.09.2019 07:05:35.713
23.09.2019 07:05:35.824
Detected Modbus Frame =
SlavelD=03
FunctionCode=04
Addr/Data=02 01 0A
CRC=41 67

Input Register Answer:

23.09.2019 07:05:51.677
23.09.2019 07:05:51.789
Detected Modbus Frame =
SlaveID=04
FunctionCode=04
Addr/Data=02 40 00
CRC=44 Fo

Input Register Answer:

[TX] - ©1 04 00 03 09 01 C1 CA
[RX] - ©1 04 02 FF FF B8 80
01 04 02 FF FF BS 80

Slave=001 ValueHex=FFFF
[TX] - ©2 04 00 03 00 01 C1 F9

[RX] - 02 04 02 7F 58 DC FA
02 04 02 7F 58 DC FA

Slave=002 ValueHex=7F58
[TX] - ©3 04 00 03 00 01 (O 28

[RX] - 03 04 02 01 A 41 67
03 04 02 01 PA 41 67

Slave=003 ValueHex=010A
[TX] - 04 04 00 03 00 01 C1 9F

[RX] - 04 04 02 40 00 44 FO
04 04 02 40 00 44 Fo

Slave=004 ValueHex=4000

The [RX] channel shows the responses from the Modbus slaves:

slave 1 responded value "-1",

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

slave 2 responded "32600",
slave 3 responded "266" and
slave 4 responded "16384".

NOTE: If you are using the Docklight Modbus example on a RS485 bus and do not see
a device answer, check if your RS485 hardware interface automatically switches
between transmit and receive mode, or you need to use the RS485 Transceiver Control
option.

Further Information

¢ The CRC calculation is made according to the specifications for Modbus serial line
transmission (RTU mode). Docklight's checksum function supports a "CRC-MODBUS"
model for this purpose. See Calculating and Validating Checksums for more general
information on implementing checksum calculations.

e If you do not have any Modbus slave devices available, you can use a software
simulator. See the www.plcsimulator.org/ as originally mentioned on
www.modbus.org, "Modbus Technical Resources”, "Modbus Serial RTU Simulator".
This simulator was used to produce the sample data shown above.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://www.plcsimulator.org/
http://www.modbus.org

Reference

Reference

Reference

Menu and Toolbar
]

NOTE: Hotkeys are available for common menu and toolbar functions.
File Menu

[New Project
Close the current Docklight project and create a new one.

& Open Project ...
Close the current Docklight project and open another project.

Import Sequence List ...
Import all Send Sequences and Receive Sequences from a second Docklight project.

[save Project / Save Project As ...
Save the current Docklight project.

Print Project ...

Print the project data, i.e. the list of defined Send Sequences and Receive Sequences.
The sequences are printed in the same representation (ASCII, HEX, Decimal or Binary)
that is used in the Docklight main window. The representation may be chosen using the
Options dialog window.

& Print Communication ...
Print the contents of the communication window. The communication data is printed in
the same representation that is currently visible in the communication window.

Exit
Quit Docklight.

Edit Menu

Edit Send Sequence List ...
Edit the Send Sequences list, i.e. add new sequences or delete existing ones.

Edit Receive Sequence List ...
Edit the Receive Sequences list, i.e. add new sequences or delete existing ones.

Swap Send and Receive Sequence Lists
Convert all Send Sequences into Receive Sequences and vice versa.

Find Sequence in Communication Window...
Find a specific sequence within the data displayed in the communication window. See
the Find Sequence function.

[& Clear Communication Window
Delete the contents of the communications window. This applies to all four
representations (ASCII, HEX, Decimal, Binary) of the communication window.

Run Menu

k Start communication
Open the communication ports and enable serial data transfer.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

B Stop communication
Stop serial data transfer and close the communication ports.

Tools Menu

"A Start Communication Logging ...
Create new log file(s) and start logging the incoming/outgoing serial data. See logging
and analyzing a test.

& Stop Communication Logging
Stop logging and close the currently open log file(s).

& Start Snapshot Mode
Wait for a trigger sequence and take a snapshot. See Catching a specific sequence...

® Stop Snapshot Mode
Abort a snapshot and reenable the communication window display.

& Keyboard Console On
Enable the keyboard console to send keyboard input directly.

g% Keyboard Console Off
Disable the keyboard console.

Minimize/Restore Documentation Area
Minimize the Documentation Area, or bring it back to regular size.

Minimize/Restore Sequence Lists
Minimize the Send/Receive Sequence lists, or bring them back to regular size.

Project Settings...
Select the current project settings (communication settings, flow control settings,
communication filter...).

2 Options...
Select general settings (e.g. display).

Expert Options...
Select expert program options intended for advanced users and specific applications
(e.g. high monitoring accuracy).

8.2 Dialog: Edit Send Sequence

This dialog is used to define new Send Sequences and edit existing ones (See also
Editing and Managing Sequences).

Index
The index of the sequence displayed below. The first sequence has index 0 (zero).

1 - Name

Unique name for this sequence (e.g. "Set modem speaker volume"). This name is for
referencing the sequence. It is not the data that will be sent out through the serial port.
See "2 - Sequence" below.

2 - Sequence
The character sequence that will be transmitted through the serial port.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

3 - Additional Settings

¢ Repeat - Check the "Send periodically..." option to define a sequence that is sent
periodically. A time interval between 0.01 seconds and 9999 seconds can be
specified.

NOTE: The Windows reference time used for this purpose has only limited precision.
Time intervals < 0.03 seconds will usually not be accurate.

e Checksum - Perform automatic calculation of any type of checksum, including any
type of CRC standard such as Modbus, CCITT, CRC32.

TIP: See Calculating and Validating Checksums for a general overview, and Checksum
Specification for the text format used to define a checksum.

Wildcards

Wildcards can be used to introduce parameters into a Send Sequence that you wish to
insert manually each time the sequence is sent. See section Sending commands with
parameters for details and examples.

Control Character Shortcuts

Using keyboard shortcuts is a great help when editing a sequence that contains both
printing characters (letters A-z, digits 0-9, ...) and non-printing control characters
(ASCII code 0 to 31). Predefined shortcuts are:

Ctri+Enter for carriage return / <CR> / decimal code 13

Ctrl+Shift+Enter for line feed / <LF> / decimal code 10

Use 42 Options... --> Control Character Shortcuts to define other shortcuts you find
useful.

Sequence Documentation
Add some documentation about this sequence here. This documentation is also shown
in the main window when selecting the sequence in the Send Sequences list.

8.3 Dialog: Edit Receive Sequence
|

This dialog is used to define new Receive Sequences and edit existing ones (See also
Editing and Managing Sequences).

Index
The index of the sequence displayed below. The first sequence has index 0 (zero).

1 - Name

Unique name for this sequence (e.g. "Ping received"). This name is for referencing the
sequence. It is not the sequence received through the serial port. See "2 - Sequence”
below.

2 - Sequence
The character sequence which should be detected by Docklight within the incoming
serial data.

TIP: Special Function Characters are available for detecting inter-character delays,
evaluating handshake signal changes or detecting a break state.

3 - Action
The action(s) performed when Docklight detects the sequence defined above.

You may choose from the following actions:

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

e Answer - After receiving the sequence, transmit one of the Send Sequences. Only
Send Sequences that do not contain wildcards can be used as an automatic answer.

¢ Comment - After receiving the sequence, insert a user-defined comment into the
communication window (and log file, if available). Various comment macros are
available for creating dynamic comment texts.

o Trigger - Trigger a snapshot when the sequence is detected. This is an advanced
feature described in the section Catching a specific sequence...

e Stop - Stop communications and end the test run.

e Checksum - Perform automatic validation of a checksum, including any type of CRC
standard such as Modbus, CCITT, CRC32.
Set the Checksum Specification, as well as what should be done with the resuilt:
Detect Checksum OK - the received data must have the same checksum than the
calculated value from Docklight.
Checksum Wrong - the opposite. A mismatching checksum constitutes a "sequence
match".
Both OK/Wrong - the sequence is always detected. The checksum area will contain
all ASCII "1" (HEX 31) for a matching checksum, or ASCII "0" (HEX 30) for a wrong
checksum.

TIP: See Calculating and Validating Checksums for a general overview, and Checksum
Specification for the text format used to define a checksum.

Wildcards

Wildcards can be used to test for sequences that have a variable part with changing
values (e.g. measurement or status values). See section Checking for sequences with
random characters for details and examples.

Control Character Shortcuts

Using keyboard shortcuts is a great help when editing a sequence that contains both
printing characters (letters A-z, digits 0-9, ...) and non-printing control characters
(ASCII code 0 to 31). Predefined shortcuts are:

Ctri+Enter for carriage return / <CR> / decimal code 13

Ctri+Shift+Enter for line feed / <LF> / decimal code 10

Use 42 Options... --> Control Character Shortcuts to define other shortcuts you find
useful.

Sequence Documentation
Add some documentation about this sequence here. This documentation is also shown
in the main window when selecting the sequence in the Send Sequences list.

8.4 Dialog: Start Logging / Create Log File(s)

|
Menu Tools > ' Start Communication Logging ...

Log file format
The available log formats are plain text (.txt), HTML for web browsers (.htm), or RTF
Rich Text Format for Microsoft Word or Wordpad (.rtf).

¢ Plain text file (.txt) is a good choice if you expect your log files to become very
large.

TIP: The Windows built-in Notepad editor can be very slow in opening and editing
larger files. We recommend the popular Open Source editor Notepad++ as available at
http://notepad-plus.sourceforge.net - it is a much faster and more powerful alternative.

NOTE: there is no size limit for Docklight log files besides the limits on your Windows
PC. We have successfully tested Docklight in long-term monitoring / high volume

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://notepad-plus.sourceforge.net

Reference

applications and created log files with several GB size without any stability issues.

e HTML files (.htm) are more comfortable to analyze, because they include all the
visual formatting of the Docklight communication windows (colors, bold characters,
italic characters). However, the disk size for such a file will be larger than for a plain
text format, and large HTML files will slow down common web browsers.

TIP: If you have specific requirements on the output format, you can customize the
HTML output.

¢ RTF Rich Text Format (.rtf) is a good choice for both small and large log files with
formatted text - both Microsoft Word and Wordpad can navigate through larger files
fast and without appearing unresponsive.

NOTE: Due to the specifics of the RTF document format, Docklight cannot efficiently
append new data to an existing log file, but needs to create a temporary copy of the
existing log first, which can cause additional delays. It is also not supported to append
new logging data with different colors & font settings than at the start of the file.

Log file directory and base name

Choose the directory and base file name for the log file(s) here. The actual file path
used for the individual log file representations are displayed in the text boxes within the
"Log file representation" frame.

Overwrite / append mode

Choose "append new data" if you do not want Docklight to overwrite existing log file(s).
Docklight will then insert a "start logging / stop logging" message when opening / closing
the log files. This is so that when in 'append mode' it is still possible to see when an
individual log file session started or ended.

Representation

A separate log file may be created for each data representation (ASCII, HEX, ...).
Choose at least one representation. The log files will have a ".txt" or ".htm" file extension.
Docklight additionally adds the representation type to the file name to distinguish the
different log files. E.g. if the user specifies "Test1" as the base log file name, the plain
text ASCII log file will be named "Test1_asc.txt", whereas the plain text HEX log file will
be named "Test1_hex.td".

Disable communication window while logging

If you are monitoring a high-speed communication link or if you are running Docklight
on a slow computer, Docklight may not be able to process all the transmitted data or
may even freeze (no response to any user input).

Using this option to disable the communication window output while logging the data to a
file. Docklight will run much faster, since the continuous display formatting and update
requires considerable CPU time.

NOTE: For more information on high-speed applications, see also the section How to
Increase the Processing Speed...

8.5 Dialog: Customize HTML Output
|

(via menu Tools > A Start Communication Logging ... , then choose HTML file for
web browsers (.htm) and click Customize HTML output)

This dialog allows you to change the appearance of the HTML log files, by modifying the
HTML template code that Docklight uses when generating the HTML log file data.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

You need some basic understanding of HTML documents and CSS style attributes. We
recommend www.htmldog.com (English) or www.selfhtml.org (German) for a quick
overview on these topics.

HTML Header Template
The HTML document header. Here you can change the font applied to the log file data,
using the following CSS style attributes:

CSS Style Attribute |Description and Example

font-family Defines one or several fonts (or: font categories) that the
HTML browser should use to print a text. If the browser does
not support the first font, it will try the second one, a.s.o. The
last font usually defines a generic font category that every
browser supports. Examples:

font-family:'Courier New', Courier, monospace
font-family:'Times New Roman', Times, serif
font-family:arial, helvetica, sans-serif

font-size Specifies the font size. Both, absolute and relative sizes are
possible. Examples for absolute font sizes:
font-size:12pt

font-size:xx-small

font-size:x-small

font-size:small

font-size:medium

font-size:large

font-size:x-large

font-size:xx-large

Examples for relative font sizes (relative to the parent HTML
element)

font-size:smaller

font-size:larger

font-size:90%

NOTE: Use the semicolon (";") as a separator between two different CSS style
attributes, e.g.
font-family:sans-serif; font-size:small

NOTE: Docklight will insert additional <u> (underline), <i> (italic) and (bold) HTML
tags, if such formatting options are activated in the Display Settings. You do not have to
use the font-style or font-weight attribute to create these effects.

HTML Footer Template
Adds additional footer text and closes the HTML document.

Data Element Template

For every new piece of log file information (channel 1 data, channel 2 data, or a
comment text), a new tag with different text color is added to the HTML log
file.

The template code for the header, footer and data parts contains Docklight-specific
wildcards which must not be deleted:

Wildcard Description

%BACKCOLOR% The background color, as selected in the Display Settings
%HEADERMSG% Header text at the start of the log file

%FOOTERMSG% Footer text at the end of the log file

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://www.htmldog.com
https://www.selfhtml.org

Reference

8.6

8.7

%DATAY% a chunk of the log file data: channel 1 data, channel 2 data, or
a comment text

% TEXTCOLOR% The text color to apply for %DATA%, as selected in the
Display Settings

When generating a log file, Docklight replaces the wildcards with the current display
settings and the actual communication data.

Dialog: Find Sequence
|
Menu Edit > # Find Sequence in Communication Window...

The Find Sequence function searches the contents of the communication window. The

search is performed in the communication window tab that is currently selected (ASCII,

HEX, Decimal or Binary). You may, however, define your search string in any other

representation.

Searching the communication windows is only possible if the communication is stopped.

You can search for anything that is already defined as a Send Sequence or a Receive
Sequence, or you may define a custom search sequence.

NOTE: If you are looking for a sequence within the ASCIl communication window,

please remember the following limitations:

¢ The Find Sequence function is not able to locate sequences containing non-printing
control characters (ASCII decimal code < 32) or other special characters (decimal
code > 127). This is due to the nature of the ASCII display. Search using the HEX or
Decimal communication window tab instead.

¢ In ASCII mode, the Find Sequence function will treat date/time stamps and any other
comments in the same way as regular communication data. In HEX / Decimal /
Binary mode, all additional information is ignored as long as it does not look like a
character byte value.

Dialog: Send Sequence Parameter
|

Type in one or several value(s) for a Send Sequence with wildcards here. As with the
Edit Send/Receive Sequence dialog, you may use control character shortcuts or
clipboard functions.

Parameter No.

A Send Sequence can contain any number of wildcards. Each set of consecutive
wildcards is considered a separate parameter. The value for each parameter is entered
separately.

Minimum Characters Required
For each '?' wildcard exactly one character is required. Therefore, the minimum number
of characters required is equal to the number of '?' wildcards within one parameter.

NOTE: While the Send Sequence Parameter dialog is shown, all serial communication
is paused. Docklight does not receive any data and does not send any (periodical)
Send Sequences.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

8.8 Dialog: Project Settings - Communication
|

Menu Tools > =" Project Settings... | Communication

Communication Mode

Send/Receive

Docklight acts both as transmitter and receiver of serial data. This mode is used when
Testing the functionality or the protocol implementation of a serial device or simulating a
serial device.

Naming conventions: The received data (RX) will be displayed and processed as
"Channel 1", the transmitted data (TX) will be displayed as "Channel 2".

Monitoring

Docklight receives serial data on two different communication channels. This mode is
used, for example, when Monitoring the communication between two devices.

Naming conventions: The serial data from device 1 is "Channel 1", the data from device
2 is "Channel 2".

Communication Channels - Serial COM ports or Docklight TAP/VTP
In Docklight, a communication channel can be configured as

e Serial COM port (RS232, RS422 or RS485)

e TAP port for Docklight Tap monitoring

o VTP port for Docklight Tap Pro or Tap 485 monitoring

For serial COM port applications, choose one (or in Monitoring Mode: two) COM ports
from the dropdown list. The dropdown list shows all COM ports available on your PC via
the Windows operating system. You can also type in any COM port from COM1 to
COM256 manually.

For Docklight Tap monitoring applications, open the dropdown list and choose the TAP
port (e.g. TAPO for Channel 1, and TAP1 for Channel 2) from the 'USB Tap' section
below the COM ports. The TAP connections are only available if Communication Mode
is set to 'Monitoring', the Docklight Tap is plugged in and the Docklight Tap USB device
drivers are installed properly.

For Docklight Tap Pro or Tap 485 monitoring, choose VTP ports (e.g. VTPO / VTP1).

Setting / Examples Description

COMxxx The channel is connected to a serial COM port.
Use the dropdown list to see all COM ports available on your

COM1 PC from the Windows operating system.

COM256

TAPx The channel is connected to one of the Docklight Tap
monitoring data directions. The TAP connections are only

TAPO available if Communication Mode is set to 'Monitoring', the

TAP1 Docklight Tap is plugged in and the Docklight Tap USB
device drivers are installed properly.

VTPx The VTPx channel is connected to one of the Tap Pro / Tap
485 monitoring data directions, similar to the Docklight Tap

VTPO application using TAPx settings.

VTP1

COM Port Settings

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Baud Rate
Choose a standard baud rate from the dropdown list, or use a non-standard baud rate
by typing any integer number between 110 and 9999999.

NOTE: Non-standard baud rates may not work correctly on all COM ports, dependent on
the capabilities of your COM port's hardware UART chip. You will receive no warning, if
any non-standard rate cannot be applied.

NOTE: Although Docklight's Project Settings allow you to specify baud rates up to 9
MBaud, this does not mean Docklight is able to handle this level of throughput
continuously. The average data throughput depends very much on your PC's
performance and the Docklight display settings. See also How to Increase the
Processing Speed.

NOTE: There are many COM ports drivers and applications that do not use actual
RS232/422 or 485 transmission, and do not require any of the RS232 communication
parameters. In some cases such COM port drivers even return an error when trying to
set the RS232 parameters, so Docklight would fail to open the COM channel. Use the
Baud Rate setting None for these applications.

Data Bits and Stop Bits
Specify the number of data bits and stop bits here. As with the baud rate, some of the
available settings may not be supported by the COM port device(s) on your PC.

Tap 485 Sign. Level.
The Docklight Tap Pro / Tap 485 support additional voltage levels, besides the standard

RS232 voltages:
o RS485/422 - the differential voltage levels for RS485 and RS422 bus applications.

¢ Inverted - Inverted RS232/TTL mode, where the mark state (or logical 1) is the
positive voltage, and the space state (logical 0) is the negative voltage or zero volts.

Parity

All common parity check options are available here. (The settings 'Mark' and 'Space’ will
probably not be used in practical applications. 'Mark' specifies that the parity bit always
is 1, 'Space' that the parity bit is always 0, regardless of the character transmitted.)

Parity Error Character

This is the character that replaces an invalid character in the data stream whenever a
parity error occurs. You should specify an ASCII character (printing or non-printing)
that does not usually appear within your serial data stream. Characters may be defined
by entering the character itself or entering its decimal ASCII code (please enter at least
two digits).

NOTE: Choose "(ignore)" for the Parity Error Character if you need to transmit/receive
the parity bit but Docklight should preserve all incoming characters, even when the
parity bit is wrong. This is useful for applications where a 9th bit is used for addressing
purposes and not for error checking.

Using Baud Rate Scan - VTP channels only

Docklight Tap Pro / Tap 485 devices offer a baud rate scan / autodetect mode. To
activate baud rate scan, choose None from the Baud Rate setting and close the

Project Settings dialog. Now start the communication using menu Run > 'k Start
communication (F5). The Docklight Tap Pro / Tap 485 now scans the communication
independently in both directions. If serial data could be detected in either data direction,
the most probable settings are displayed as comments in the Communication Window.
They are also are noted in the communications status bar under the main toolbar.

NOTE: The accuracy of this autodetection feature depends on the actual data stream
present during the scan. A continuous stream of highly random data leads to high

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

detection accuracy, while small transfers of individual bytes or repeating patterns may
lead to wrong baud rates, data bit or parity guesses.

8.9 Dialog: Project Settings - Flow Control
|

Menu Tools > E=I' Project Settings... | Flow Control

Used to specify additional hardware or software flow control settings for serial
communications in Docklight Send/Receive Mode.

Flow Control Support

Off
No hardware or software flow control mechanism is used. RTS and DTR are enabled
when the COM port is opened.

Manual

Use this mode to control the RTS and DTR signals manually and display the current
state of the CTS, DSR, DCD and Rl lines. If flow control is set to "Manual", an additional
status element is displayed in the Docklight main window. You may toggle the RTS and
DTR lines by double clicking on the corresponding indicator.

NOTE: Flow control signals are not treated as communication data and will not be
displayed in the communication window or logged to a file.

Hardware Handshaking, Software Handshaking
Support for RTS/CTS hardware flow control and XON/XOFF software flow control.
These are expert settings rarely required for recent communication applications.

RS485 Transceiver Control

Some RS232-t0-RS485 converters require manual RTS control, i.e. the RS232 device
(PC) tells the converter when it should enable its RS485 driver for transmission. If you
choose "RS485 Transceiver Control", the COM port sets RTS to High before transmitting
the first character of a Send Sequence, and resets it to Low after the last character has
been transmitted.

NOTE: Many USB-to-Serial converters or virtual COM port drivers do not implement the
Windows RTS_CONTROL_TOGGLE mode properly. If you experience problems with
RS485 Transceiver Control, try using a PC with an on-board COM interface or a
standard PCI COM card.

8.10 Dialog: Project Settings - Communication Filter
|

Menu Tools > =I' Project Settings... | Communication Filter

Contents Filter

Use this option if you do not need to see the original communication data on the serial
line and only require the additional comments inserted by a Receive Sequence. This is
useful for applications with high data throughput, where most of the data is irrelevant for
testing and you only need to watch for very specific events. These events (and related
display output) can be defined using Receive Sequences.

Channel Alias

This allows you to re-label the two Docklight data directions according to your specific
use case. E.g. [Docklight] / [Device] instead of [TX] / [RX]. Or [Master] / [Slave] instead
of [TAPQ] / [TAP1].

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

8.11

Dialog: Options
|

Menu Tools > 42 Options...
Display

Formatted Text Output (Rich Text Format)

used for setting the appearance of the Docklight communication window. The two
different serial data streams, "Channel 1" and "Channel 2", may be displayed using
different colors and styles. The standard setting uses different colors for the two
channels, but using different font styles (e.g. Italics for "Channel 2") is also possible.
You may also choose the overall font size here.

NOTE: If you change the font size, the communication window contents will be deleted.
For all other changes, Docklight will try to preserve the display contents.

Plain Text Output (faster display, but no colors & fonts)

The formatted text output is similar to a word processor and consumes a considerable
amount of CPU time. It also requires frequent memory allocation and deallocation which
might decrease your PC performance. So if you are monitoring a high-speed
communication link, but still want to keep an eye on the serial data transferred, try using
the "Plain Text Output" format.

Control Characters (ASCII 0 - 31)

For communication data containing both printing ASCII text as well as non-printing
control characters, it is sometimes helpful to see the names of the occurring control
characters in the ASCIlI mode display window. Docklight provides an optional display
settings to allow this. You can also suppress the control characters (except CR and LF)
for cases when this would clutter your display.

Display Modes

Communication Window Modes

By default, Docklight will display four representations of the serial data streams: ASCII,
HEX, Decimal and Binary. You may deactivate some of these modes to increase
Docklight's overall performance. For example, the Binary representation of the data is
rarely required. Disabling Binary mode for the communication window will considerably
increase processing speed. Even when turned off for the communication window,
logging in all formats is still possible.

See also the Plain Text Output option above.

Date/Time Stamps

Adding a Date/Time Stamp

Docklight adds a date/time stamp to all data that is transmitted or received. You may
choose to insert this date/time stamp into the communication window and the log file
whenever the data flow direction changes between Channel 1 and Channel 2.

For applications where the data flow direction does not change very often, you may
want to have additional date/time stamps at regular time intervals. For this, activate the
Clock - additional date/time stamp... option then and choose a time interval.

On a half duplex line (e.g. 2 wire RS485), changes in data direction are difficult to
detect. Still, in most applications there will be a pause on the communication bus before
a new device starts sending. Use the Pause detection... option to introduce additional
time stamps and make the pauses visible in your communication log.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Date/Time Format

Docklight offers time stamps with a resolution of up to 1/1000 seconds (1 millisecond).
For compatibility to earlier Docklight versions (V1.8 and smaller), 1/100 seconds is
available, too.

NOTE: The resulting time tagging accuracy can be considerably different, e.g. 10-20
milliseconds only. The actual accuracy depends on your serial communications
equipment, your PC configuration, the Docklight Display Settings (see above) and the
Docklight Expert Options. See the section How to Obtain Best Timing Accuracy for
details.

Control Characters Shortcuts

Here you can define your own keyboard shortcuts for ASCII Control Characters (ASCII
code < 32), or for any character code > 126. Keyboard shortcuts can be used within
the following Docklight dialogs and functions

Dialog: Edit Send Sequence

Dialog: Edit Receive Sequence

Dialog: Find Sequence

Dialog: Send Sequence Parameter

Keyboard Console

For each character from decimal code 0 to 31 and from 127 to 255, you can define a
keyboard combination to insert this character into a sequence (Shortcut). You may
also define a letter which is used to display this control character when editing a
sequence in ASCII mode (Editor).

Double click to change the value of a Shortcut or Editor field.

Predefined shortcuts are:
Ctri+Enter for carriage return / <CR> / decimal code 13
Ctrl+Shift+Enter for line feed / <LF> / decimal code 10

8.12 Dialog: Expert Options
|

Menu Tools > Expert Options...

Expert Options are additional settings for specialized applications with additional
requirements (e.g. high time tagging accuracy).

Performance
Communication Driver Mode

Use External / High Priority Process mode to work around a common problem for
any Windows user mode application: unspecified delays and timing inaccuracies can
be introduced by the Windows task/process scheduling, especially if you are running
other applications besides Docklight.

External / High Priority Process mode is recommended for high accuracy / low
latency monitoring using the Docklight Tap.

NOTE: For even higher and guaranteed time tagging accuracy, use the Docklight Tap
Pro / Tap 485 accessories. Their accuracy does not depend on Windows and driver

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

latencies, and High Priority Process mode is not required for Tap Pro and Tap 485
applications.

In External / High Priority Process mode, the data collection in Docklight becomes a
separate Windows process with "Realtime" priority class. It will be executed with higher
priority than any other user application or additional application software such as
Internet Security / Antivirus. For best results Docklight needs to be Run as
administrator. Otherwise the data collection process will run with the maximum priority
permitted by the OS, but not "Realtime class".

External / High Priority Process mode must be used with care, especially when you
intend to monitor a high-speed data connection with large amounts of data. The PC

might become unresponsive to user input. To resolve such a situation, simply "pull the
plug": First disconnect the data connections or the monitoring cable to bring down the

CPU load and restore the responsiveness. Then choose 'B Stop communication in
Docklight.

NOTE: See the section How to Obtain Best Timing Accuracy for some background
information on timing accuracy.

Docklight Monitoring Mode

When Monitoring Serial Communications Between Two Devices, all received data from
one COM port is re-sent on the TX channel of the opposite COM port by default ("Data
Forwarding"). This is intended for special applications that require routing the serial
data traffic through Docklight using standard RS232 cabling.

Use the No Data Forwarding Expert Option for applications with two serial COM ports
where you need to avoid that any TX data is sent. This can be used to improve
performance when using a Docklight Monitoring Cable, or to work around problems
caused with unstable serial device drivers.

For Docklight Tap applications (e.g. using Communication Channel TAPO / TAP1), the
'Data Forwarding' setting has no effect. The Docklight Tap is accessed in read-only
mode always, and no data is forwarded.

Devices
Windows COM Devices
Use Disable I/O error detection when receiving repeated error messages like this:

DOCKLIGHT reports: General I/0 error on COM1l

NOTE: Docklight uses Windows Serial Communications in "overlapped 1/0" mode for
best efficiency and timing accuracy, and it continuously evaluates errors from the
related Win32 API calls. In rare situations like COM devices using faulty or outdated
COM device drivers, such errors can appear even in standard read/write operation. In
this case, you can use this option to revert to the behavior of Docklight V2.2 and earlier
versions: simply ignoring such errors.

Tap Pro / Tap 485

The firmware update functions for our Docklight Tap Pro / Docklight Tap 485 hardware
accessories are only required in rare situations. E.g. if you are using an older device
(< year 2017) which does not support the baud rate scan feature yet.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

8.13 Keyboard Console

The Keyboard Console tool allows you to send keyboard input directly to the serial port.

It can be activated using the menu Tools > g Keyboard Console On. The keyboard
console is only available for communication mode Send/Receive.

After activating the keyboard console, click in the communication window and type
some characters.

Docklight will transmit the characters directly through the selected serial port. The
communication window will display the characters the same way it does a Send
Sequence.

NOTE: The Keyboard Console tool supports pasting and transmitting a character
sequence from the clipboard, using Ctrl + V. This is similar to pasting clipboard data
inside the Edit Send Sequence Dialog. Clipboard contents that exceeds the maximum
sequence size of 1024 characters gets truncated.

NOTE: The keyboard console is not a full-featured terminal and does not support
specific terminal standards, such as VT 100. The Enter key is transmitted as <CR>
(ASCII 13) plus <LF> (ASCII 10). The ESC key sends <ESC> (ASCII 27). Use control
character shortcuts to send other ASCII control characters.

NOTE: The keyboard console does not support inserting ASCII characters by
pressing/holding ALT and using the numeric keypad. Please use the Edit Send
Sequences dialog in HEX or Decimal representation to create any ASCII character
code > 127.

8.14 Checksum Specification

Checksum specifications are used in Edit Send Sequence and Edit Receive Sequence
dialogs . See Calculating and Validating Checksums for a general overview.

Supported Checksum Specifications / checksumSpec Argument

checksumSpec Checksum algorithm applied

MOD256 Simple 8 bit checksum: Sum on all bytes, modulo 256.
XOR 8 bit checksum: XOR on all bytes.

CRC-7 7 bit width CRC. Used for example in MMC/SD card

applications. An alternative checksumSpec text for the same
checksum type would be:

CRC:7,09,00,00,No,No

See the "CRC:width, polynomial..." syntax described in the

last row.

CRC-8 8 bit width CRC, e.g. for ATM Head Error Correction. Same
as:
CRC:8,07,00,00,No,No

CRC-DOW 8 bit width CRC known as DOW CRC or CCITT-8 CRC. Can

be found in Dallas iButton(TM) applications. Same as:
CRC:8,31,00,00,Yes,Yes

MOD65536 Simple 16 bit checksum: Sum on all bytes, modulo 65536.

CRC-CCITT 16 bit width CRC as designated by CCITT. Same as:
CRC:16,1021,FFFF,0000,No,No

CRC-XMODEM 16 bit width CRC similar to CRC-CCITT, but the initial value

is zero. Same as:
CRC:16,1021,0000,0000,No,No

CRC-16 16 bit width CRC as used in IBM Bisynch, ARC. Same as:

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

CRC:16,8005,0000,0000,Yes,Yes

CRC-MODBUS 16 bit width CRC as used in Modbus. Similar to CRC-16, buf
with a different init value. Same as:
CRC:16,8005,FFFF,0000,Yes,Yes

CRC-32 32 bit CRC as used in PKZip, AUTODIN II, Ethernet, FDDI.
Same as:
CRC:32,04C11DB7,FFFFFFFF,FFFFFFFF,Yes,Yes

-MOD256 Similar to MOD256, but returns the negative 8 bit result, so

or the sum of all bytes including the checksum is zero.

LRC This is equivalent to what is known as LRC (Longitudinal
redundancy check) used e.g. in POS applications.

LRC-ASCII Like -MOD256 / LRC, but it expects the source data to be

HEX numbers as readable ASCII text. See the MODBUS
ASCII example below.

CRC:width, polynomial, |Generic CRC calculator, where all CRC parameters can be

init, set individually:

finalXOR, reflectedinput, |width : The CRC width from 1..32.

reflectedOutput polynomial : HEX value. The truncated CRC polynomial.
init : HEX value. The initial remainder to start off the
calculation.

finalXor : HEX value. Apply an XOR operation on the
resulting remainder before returning it to the user.
reflectedinput : Yes = Reflect the data bytes (MSB becomeg
LSB), before feeding them into the algorithm.
reflectedOutput : Yes = Reflect the result after completing
the algorithm. This takes places before the final XOR
operation.

Remarks

Each of the predefined CRC algorithms (CRC-8, CRC-CCITT, ...) can be replaced by a
specification string for the generic CRC computation (CRC:8,07,00...) as described
above. We have carefully tested and cross-checked our implementations against
common literature and resources as listed in the CRC Glossary.

Unfortunately there are a lot of CRC variations and algorithms around, and choosing
(not to mention: understanding) the right CRC flavor can be a rather difficult job. A good
way to make sure your CRC calculation makes sense is to run it over an ASCI| test
string of "123456789". This is the most commonly used testing string, and many
specifications will refer to this string and provide you the correct checksum the CRC
should return when applied on this string.

Checksums in Edit Send Sequence / Edit Receive Sequence

In the Checksum tab, choose one of the predefined definition strings from the drop-
down list, or type in your own definition in the following format;

[(startPos, len)] checksumSpec [A or L] [@ targetPos] [# optional user comment]

with anything inside [] being an optional part.

Part Description

checksumSpec |Required. String that specifies the checksum algorithm and its
parameters, according to the checksumSpec Format table above.
(startPos, len) |Optional. Start and length of the character area that is used to

e.g. calculate the checksum. By default everything before the checksum
(1, 4) result is used.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

A Optional. If used, the resulting checksum value is converted into a
HEX number as readable ASCII text. See the MODBUS ASCII
example below.

L Optional. Little Endian - the resulting checksum value is stored with the
least significant byte (LSB) first. Default is Big Endian / MSB first.

@ targetPos |Optional. Specifies the first character position for storing the resulting
checksum value.

e.g. By default Docklight writes the checksum result to the last sequence

@ -4 data positions, unless you have specified "A" for ASCII result. In this
case, the results is stored one character before the end, so there is
still space for a "end of line" character, typically a CR as in Modbus
ASCII.

comment You can type in a comment about this checksum specification

Remarks

startPos, len and targetPos support negative values, too, as a way to specify positions
relative to the end of the sequence and not relative to the start of the sequence.

Examples:

startPos is -4 : start calculating at the 4th character from the end.
len is -1 : use everything until the end of the sequence.
targetPos is -1 : first (and only) byte of the result is stored at the last sequence

character position.

targetPos is -2 : result is stored starting at the 2nd character from the end.
targetPos is -3 : result is stored starting at the 3rd character from the end.

Examples

Checksum Send Sequence |Actual TX Data Remarks

Specification Example

(off, no 01]102|03|04]|e1 02 03 04 o5 |after a # you can type in

checksum) 05] 00 00 any comment to
describe your checksum

MOD256 # simple |01]02| 03|04 |01 02 03 04 05 |As a checksum

one byte sum on |05] 00 oF placeholder, an extra 00

all but the last was added, but you can

character use any value from 00-
FF.

CRC-MODBUS L # 01|06|01]02]| o1 o6 01 02 o0 |CRC-MODBUS is a 16

Modbus RTU 00| 07| FF | FF |o7 68 34 bit checksum which is

checksum. Lower placed at the last two

Byte first character positions in

("Little the sequence data by

Endian') default.

(2, -5) LRC- :]111]10]3]|0]:1103006b00037E<|JLRC-ASCI! treats the

ASCII A @ -4 |0|6]|b|0]|0| |cR><LF> sequence data as a

MopBUS Ascrir (0|3 [X|X|r|n readable HEX string,

checksum is LRC
over readable
HEX data,
excluding start
':' and end
'CR/LF'

where each data byte is
represented by two
characters.

Using the A option
produces a readable 2-
letter checksum text,
instead of a one
character result.

The @ -4 places the
result at the 4th

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

character position from
the right (leaving the
trailing CR / LF intact).
CRC:8,07,00,00,N]01|02]| 03|04 |01 02 03 04 05 [Rare or custom CRCs

o,Yes 05| 00 3D flavors can be calculated
CRC with by Docklight, but you
custom, non- need to know the
standard spec required CRC

calculation parameters.
For more details see the
resources listed in the
CRC Glossary.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Support

9.2

Support

Web Support and Troubleshooting
|

For up-to-date FAQs and troubleshooting information, see our online support pages
available at

www.docklight.de/support/

For Docklight-related news and information about free maintenance updates, see:

www.docklight.de/news.htm

For information about upgrading to Docklight Scripting (TCP, UDP, HID applications
and automated testing), see:

www.docklight.de/upgrade.htm

E-Mail Support
|

We provide individual e-mail support to our registered customers. Please include your
Docklight license key number in your request. We will contact you as soon as possible
to find a solution to your problem. Send your support request to

support@docklight.de

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://docklight.de/support/
https://docklight.de/news.htm
https://docklight.de/upgrade.htm
mailto:support@docklight.de

Appendix

Appendix

10 Appendix

10.1 ASCIl Character Set Tables

Control Characters

Dec Hex ASCII Char. Meaning

0 00 NUL Null

1 01 SOH Start of heading

2 02 STX Start of text

3 03 ETX Break/end of text

4 04 EQOT End of transmission

5 05 ENOQ Enquiry

6 06 ACK Positive acknowledgment

7 07 BEL Bell

8 08 BS Backspace

9 09 HT Horizontal tab

10 0A LF Line feed

11 0B vT Vertical tab

12 oc FF Form feed

13 0D CR Carriage return

14 OE SO Shift out

15 0F ST Shift in/XON (resume output)
16 10 DLE Data link escape

17 11 DC1 XON - Device control character 1
18 12 DC2 Device control character 2
19 13 DC3 XOFF - Device control character 3
20 14 DC4 Device control character 4
21 15 NAK Negative Acknowledgment

22 16 SYN Synchronous idle

23 17 ETB End of transmission block
24 18 CAN Cancel

25 19 EM End of medium

26 1A SUB substitute/end of file

27 1B ESC Escape

28 1cC FS File separator

29 1D GS Group separator

30 1E RS Record separator

31 1F Us Unit separator

Printing Characters

Dec Hex ASCII Char. Meaning
32 20 Space
33 21 ! !

34 22 " "

35 23 # #

36 24 $ $

37 25 % %

38 26 & &

39 27 ! !

40 28 ((

41 29))

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4cC
4D
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
60
61
62

+ %

O 0O J o U WNE O - |

A Ne e

>— A1 N KX IAHMWWO"WOoOZEE"RgHIDOHEBOOQWEP® OV

Docklight V2.4 User Manual 02/2023

+ %

Zero
One
Two
Three
Four
Five
Six
Seven
Eight
Nine

A

>— A1 N KX IAHMWWO"OoOZEE"gHIDOHEHEOOQWEP® OV

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

99 63 c c
100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69 i i
106 6A I I
107 6B k k
108 6C 1 1
109 6D m m
110 ok n n
111 oF ¢} ¢}
112 70 jS) jS)
113 71 q q
114 72 r r
115 73 S S
116 74 t t
117 75 u u
118 76 v v
119 77 W W
120 78 X X
121 79 \% \%
122 TA z z
123 7B { {
124 7C | |
125 7D } }
126 TE ~ Tilde
127 TF DEL Delete

10.2 Hot Keys

General Hot Keys

Applies to

e Communication Window (ASCII, HEX, Decimal, Binary)
¢ Edit Send Sequence dialog / Edit Receive Sequence dialog

e Documentation Area

Function Hot Key
Context-specific help Fl

Cut Ctrl+X
Copy Ctrl+C
Paste Ctrl+v
Delete Del
Select all Ctrl+A
Context-specific Hot Keys

Docklight menu

Menu Function Hot Key
File New Project Ctrl+N

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

10.3

File Open Project Ctrl+0
File Save Project Ctrl+s
File Print Communication Ctrl+p
Edit Find Sequence in Comm.Window Ctrl+F
Run Start Communication F5

Run Stop Communication F6

Tools Start Comm. Logging F2

Tools Stop Comm. Logging F3

Tools Keyboard Console On Ctrl+F5
Tools Keyboard Console Off Ctrl+F6
Tools Minimize/Restore Documentation Area |F12
Tools Minimize/Restore Sequence Lists Shift+F12
Communication Window

Function Hot Key
Find a Sequence Ctrl+F
Clear All Communication Windows Ctrl+w
Toggle Between ASCII, HEX, Decimal and Binary |Ctrl+Tab
Representation

Send Sequences / Receive Sequences List

Function Hot Key
Delete This Sequence Del

Edit This Sequence Ctrl+E
Send This Sequence Space

- Send Sequences List only -

Edit Send Sequence Dialog / Edit Receive Sequence Dialog

Function Hot Key
Cancel Esc
Wildcard "?' (matches one character) F7
Wildcard '# (matches one or zero characters) F8
Function Character '&' (delay for x * 0.01 sec.) F9
Function Character '%' - (Break state) F10
Function Character "' (handshake signals) Fll
Documentation Area

Function Hot Key
Default Font Ctrl+D

RS232 Connectors / Pinout

The most common connectors for RS232 communications are

e 9-pole SUB D9 (EIA/TIA 574 standard). Introduced by IBM and widely used. See

below.

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

e 25-pole SUB D25 (RS232-C). This is the original connector introduced for the
RS232 standard. It provides a secondary communication channel.

¢ 8-pole RJ45 (different pinouts for Cisco/Yost wiring, EIA/TIA-561, and other
manufacturer-specific pinouts).

RS232 SUB D9 (D-Sub DB9) Pinout

View: Looking into the male connector.
Pinout: From a DTE perspective (the DTE transmits data on the TX Transmit Data line,
while the DCE receives data on this line)

©ce o0 o0
1 2 3 4 5
.5.7.8.9

Pin No. |Signal Name |Description DTE in/out
1 DCD Data Carrier Detect Input

2 RX Receive Data Input

3 TX Transmit Data Output

4 DTR Data Terminal Ready Output

5 SGND Signal Ground -

6 DSR Data Set Ready Input

7 RTS Request To Send Qutput

8 CTS Clear To Send Input

9 RI Ring Indicator Input

RS232 SUB D25 (D-Sub DB25) Pinout

View: Looking into the male connector.
Pinout: From a DTE perspective.

[]
9 10
14 15 16 17 18 19 20 21.22.23.24 5

e 06 0 ¢ O
1 2 3 4 5 6 7 8
e 0.0 0.0 0 0 ¢

Pin No. |Signal Name |Description

1 - Protective/Shielding Ground
2 X Transmit Data

3 RX Receive Data

4 RTS Request To Send

5 CTS Clear To Send

6 DSR Data Set Ready

7 SGND Signal Ground

8 DCD Data Carrier Detect

9 - Reserved

10 - Reserved

11 - Unassigned

12 SDCD Secondary Data Carrier Detect
13 SCTS Secondary Clear To Send
14 STx Secondary Transmit Data

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

15 TXCLK Transmit Clock

16 SRx Secondary Receive Data

17 RxCLK Receive Clock

18 LL Local Loopback

19 SRTS Secondary Request To Send

20 DTR Data Terminal Ready

21 RL/SQ Remote Loopback / Signal
Qualify Detector

22 RI Ring Indicator

23 CH/CI Signal Rate Selector

24 ACLK Auxiliary Clock

25 - Unassigned

RJ45 8-pole pinouts

View: Top View: Front

1] g 1

——

Several conflicting pinouts exist and are in use for RJ45 connectors in RS232
communications:

Cisco Console / Yost Cable / Rollover cable applications

Pinout: From a DTE perspective (the DTE transmits data on the TX Transmit Data line)

Pin No. |Signal Name |Description

1 CTS Clear To Send

2 DCD Data Carrier Detect
3 RX Receive Data

4 SGND Signal Ground

5 SGND Signal Ground

6 X Transmit Data

7 DTR Data Terminal Ready
8 RTS Request To Send

NOTE: The Cisco/Yost pinout is used with cables that are wired "mirror image" on one
end., similar to a Null Modem Cable with Handshaking. Every device has the same RJ45
female socket and transmits data on the same pin. See also the Yost Serial Device
Wiring Standard .

EIA/TIA-561 standard for RJ45 / 8P8C modular connector

[Pin No. |Signal Name |Description |

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://yost.com/computers/RJ45-serial/
https://yost.com/computers/RJ45-serial/

Appendix

1 DSR/RI Data Set Ready / Ring Indicator
2 DCD Data Carrier Detect

3 DTR Data Terminal Ready

4 SGND Signal Ground

5 RX Receive Data

6 X Transmit Data

7 CTS Clear To Send

8 RTS Request To Send

NOTE: Though this is an official standard, it is more likely that you will find RS232 RJ45
products with different pinout, either the Cisco/Yost variant above or manufacturer-
specific pinouts, e.g. MOXA Nport.

10.4 Standard RS232 Cables
]

Classic RS232 Connections

When connecting two serial devices, different cable types must be used, depending on
the characteristics of the serial device and the type of communication used.

Overview of RS232 SUB D9 (D-Sub DB9) interconnections

serial device 1 |serial device 2 [flow control recommended cable
(handshaking)
DTE (Data DTE no handshake |simple null modem cable
Terminal signals
Equipment)
DTE DTE DTE/DCE null modem cable with partial
compatible handshaking
hardware flow
control
IDCE (Data no handshake [simple straight cable
Communications|signals
Equipment)
DTE DCE hardware flow [full straight cable
control
DCE DCE no handshake [simple null modem cable, but with
signals SUB D9 male connectors on both
ends
DCE DCE hardware flow Inull modem cable with partial
control handshaking but with SUB D9
male connectors on both ends

NOTE: A great alternative to make the correct interconnection between various DTE and
DCE type devices is to use the Yost Serial Device Wiring Standard approach by Dave
Yost.

SUB D9 Simple Straight Cable

Area of Application: DTE-DCE Communication where no additional handshake signals
are used.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://yost.com/computers/RJ45-serial/
http://yost.com
http://yost.com

Appendix

SUB D9] Protective/shielding SUB D9
female F;" \\‘ ground male

I \

| \

9] | | o=
© — ®
®® : | ®@

.
® L ®
o2l 1 °5
=) |

SUB D9 Full Straight Cable

Area of Application: DTE-DCE Communication with hardware flow control using
additional handshake signals.

SUB D9 I\ Protective/shielding ground SUB D3
‘ male
female / \
\
FJ !

@ i ! -
o—i— o2
©, —)

™ - i ©)
@ : ‘ ®

©), ; ; ©)
@ |] @
® © — © ®
/f \\ I

SUB D9 Simple Null Modem Cable without Handshaking

Area of Application: DTE-DTE Communication where no additional handshake signals

are used.
’ﬁ/ ,‘I\\ Protective/shielding ground ?3:6?2
/ Y
! \
@ @ :’ ‘ll @ @
=1 ! ®
> L :
© T— O
| Q
® — ®
o2 © 6
/ l\ ," \.a

SUB D9 Null Modem Cable with Full Handshaking

Area of Application: DTE-DTE Communication with DTE/DCE compatible hardware
flow control. Works also when no handshake signals are used.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

SUB D9 I\ Protective/shielding ground iUB [:9
female P emale

i
]
©®
®©

l
® @l}@
)

©
®
©,
o

ONORORO,

| {f \:

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

10.5 Docklight Monitoring Cable R$232 SUB D9

Docklight Monitoring Cable is a RS232 full duplex monitoring cable that is designed for
Monitoring serial communications between two devices.

SUB D9 I SUB D9
female N Protective/shielding ground male
I
i Ay
: ‘I

@ ! ! @)
o—— o | 3
« | @ — Of -
§ @ } I @ g9
: | @ 1]f @] £3
3 = — ©) 8 E
®@ - @@ E

o ok without protective
™ shield, if cable length
~ isshortand EMI is

@ @ @ @ @ unproblematic
ONOROXO;
SUB D9 SUB D9
female female
Monitor 1 Monitor 2

We offer a rugged and fully shielded RS232 Monitoring cable acessory. For more
details see our product overview pages and the Docklight Monitoring Cable datasheet.

NOTE: Our Docklight Tap or Tap Pro / Tap RS485 data taps offer superior monitoring
characteristics, and do not require two free RS232 COM ports on your PC. Only in rare
or legacy applications the Docklight Monitoring Cable is still the preferred choice today.

TIP: An inexpensive and quick solution for basic monitoring can be making your own
Monitoring Cable using a flat ribbon cable and SUB D9 insulation displacement
connectors, available at any electronic parts supplier.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://www.docklight.de
http://www.docklight.de/pdf/docklight_monitoring_cable.pdf

Appendix

10.6 Docklight Tap
|

Docklight Tap is a full-duplex RS232 communications monitoring solution for the USB
port.

Area of Application: Monitoring serial communications between two devices

Docklight has built-in support for the Docklight Tap. It recognizes the dual port USB
serial converter and offers high-speed, low-latency access to the monitoring data. Use
Docklight Monitoring Mode and Receive Channel settings TAPO / TAP1. See the
Docklight Project Settings and How to Obtain Best Timing Accuracy for details.

Please also see our product overview pages for more information about the Docklight

Tap.
Device 1 Device 2
Suh 09 Suh 09

female male

H []

N m

4

| [

USB Serial USB Serial
Converter A Converter B

Mini USB []
54321

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://docklight.de/information/#docklight-tap

Appendix

10.7 Docklight Tap Pro / Tap 485
|

Docklight Tap Pro and Docklight Tap 485 are advanced, high-resolution monitoring
solutions for the USB port. They allow true milliseconds time measurements and
monitoring high-speed data connections including RS232 status/handshake lines. They
are supported by Docklight in a similar way as the Docklight Tap.

For Docklight Tap Pro and Tap 485 applications, use Docklight Monitoring Mode and
Receive Channel settings VTPO / VTP1. See the Docklight Project Settings for more
details.

Please also see our product overview pages for more information about the Docklight
Tap Pro and Docklight Tap 485.

Docklight Tap Pro

Device 1 Device 2
Sub 09 Sub 09
female male

=
LL

F(B

[|

Receive Channel Receive Channel2
le.g. VTPO) le.g. ¥TP1)

Mini USB []
54321

Docklight Tap RS485

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://docklight.de/information/#docklight-tap-pro

Appendix

500

i

98 7 6 5 4 3 2 1

inlcluding
MC 1,5/9-ST-3,81 usB

T A
Phoenix connector ype

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

Glossary / Terms Used

11 Glossary / Terms Used
11.1 Action

For a Receive Sequence, the user may define an action that is performed after
receiving the specified sequence. Possible actions are

e Sending a Send Sequence

Only Send Sequences without any wildcards can be used

Inserting a comment

A user-defined text or an additional date/time stamp is added to the communication
data window and log file

¢ Triggering a Snapshot

¢ Stopping communication

11.2 Break

A break state on an RS232 connection is characterized by the TX line going to Space
(logical 0) for a longer period than the maximum character frame length including start
and stop bits. Some application protocols, e.g. LIN, use this for synchronization
purposes.

11.3 Character

A character is the basic unit of information processed by Docklight. Docklight always
uses 8 bit characters. Nevertheless, the communication settings also allow data
transmission with 7 bits or less. In this case, only a subset of the 256 possible 8 bit
characters will be used but the characters will still be stored and processed using an 8
bit format.

11.4 CRC

Cyclic Redundancy Code. A CRC is a method to detect whether a received
sequence/message has been corrupted, e.g. by transmission errors. This is done by
constructing an additional checksum value that is a function of the message's payload
data, and then appending this value to the original message. The receiver calculates the
checksum from the received data and compares it to the transmitted CRC value to see if
the message is unmodified. CRCs are commonly used because they allow the detection
of typical transmission errors (bit errors, burst errors) with very high accuracy.

CRC algorithms are based on polynomial arithmetic, and come in many different
versions. Common algorithms are CRC-CCITT, CRC-16 and CRC-32. An example of an
application protocol that uses a CRC is Modbus over Serial Line.

A popular article about CRCs is "CRC Implementation Code in C" by Michael Barr,
formerly published as "Slow and Steady Never Lost the Race" and "Easier Said Than
Done":

https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code

Docklight Scripting's CRC functionality (DL.CalcChecksum) was inspired by the above
article and the proposed Boost CRC library:
http://www.boost.org/libs/crc/index.html

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
http://www.boost.org/libs/crc/index.html

Glossary / Terms Used

Last not least, if you are truly fascinated by CRC alchemy, you will sooner or later run
into mentions of the following classic article from 1993:

"A Painless Guide to CRC Error Detection Algorithms™" by Ross N. Williams:
http://ross.net/crc/crcpaper.html / http://ross.net/crc/download/crc_v3.ixt

11.5 DCE

Data Communications Equipment. The terms DCE and DTE refer to the serial devices
on each side of an RS232 link. A modem is a typical example of a DCE device. DCE
are normally equipped with a female SUB D9 or SUB D25 connector. See also DTE.

11.6

|'
-
m

Data Terminal Equipment. The terms DCE and DTE refer to the serial devices on each
side of an RS232 link. A PC or a terminal are examples of a typical DTE device. DTE
are commonly equipped with a male SUB D9 or SUB D25 connector. All pinout
specifications are written from a DTE perspective. See also DCE.

11.7 Flow Control

Flow control provides a mechanism for suspending transmission while one device is
busy or for some reason cannot further communicate. The DTE and DCE must agree
on the flow control mechanism used for a communication session. There are two types
of flow control: hardware and software.

Hardware Flow Control
Uses voltage signals on the RS232 status lines RTS / DTR (set by DTE) and CTS / DSR
(set by DCE) to control the transmission and reception of data. See also RS232 pinout.

Software Flow Control

Uses dedicated ASCII control characters (XON / XOFF) to control data transmission.
Software flow control requires text-based communication data or other data that does
not contain any XON or XOFF characters.

11.8

-
|2

Local Interconnect Network. A low cost serial communication bus targeted at distributed
electronic systems in vehicles, especially simple components like door motors, steering
wheel controls, climate sensors, etc. See also the Wikipedia entry about LIN .

11.9 Modbus

Modbus is an application layer messaging protocol that provides client/server
communications between devices connected on different types of buses or networks. It
is commonly used as "Modbus over Serial Line" in RS422/485 networks, but can be
implemented using TCP over Ethernet as well ("Modbus TCP").

Two different serial transmission modes for Modbus are defined: "RTU mode" for 8 bit
binary transmissions, and "ASCIl mode". "RTU mode" is the default mode that must be
implemented by all devices.

See www.modbus.org for a complete specification of the Modbus protocol.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://ross.net/crc/crcpaper.html
http://www.ross.net/crc/
https://en.wikipedia.org/wiki/Local_Interconnect_Network
http://www.modbus.org/

Glossary / Terms Used

11.10 Multidrop Bus (MDB)

Multidrop Bus (MDB) is a more exotic RS232/RS485 application, used for example in
vending machine controllers, which requires a 9 bit compliant UART. The 9th data bit is
used for selecting between an ADDRESS and a DATA mode.

A way to monitor and simulate such communication links using standard 8-bit UARTS,
i.e. standard RS232-to-USB converters, is to use temporary parity changes.

See also Wikipedia on MDB and the original MDB 3.0 specification for more
information and details.

11.11 Receive Sequence

A Receive Sequence is a sequence that can be detected by Docklight within the
incoming serial data. A Receive Sequence is specified by

1. an unique name (e.g. "Modem Answer OK"),

2. a character sequence (e.g. "6F 6B 13 10" in HEX format),

3. an action that is triggered when Docklight receives the defined sequence.

11.12 RS232

The RS232 standard is defined by the EIA/TIA (Electronic Industries Alliance /
Telecommunications Industry Associations). The standard defines an asynchronous
serial data transfer mechanism, as well as the physical and electrical characteristics of
the interface.

RS232 uses serial bit streams transmitted at a predefined baud rate. The information is
separated into characters of 5 to 8 bits lengths. Additional start and stop bits are used
for synchronization, and a parity bit may be included to provide a simple error detection
mechanism.

The electrical interface includes unbalanced line drivers, i.e. all signals are represented
by a voltage with reference to a common signal ground. RS232 defines two states for
the data signals: mark state (or logical 1) and space state (or logical 0). The range of
voltages for representing these states is specified as follows:

11.13

Signal State Transmitter Voltage |Receiver Voltage
Range Range

Mark (logical 1) -15V to -5V -25V to -3V

Space (logical 0) +5V to +15V +3V to +25V

Undefined -5V to +5V -3V to +3V

The physical characteristics of the RS232 standard are described in the section RS232

Connectors / Pinout

RS422

An RS422 communication link is a four-wire link with balanced line drivers. In a
balanced differential system, one signal is transmitted using two wires (A and B). The
signal state is represented by the voltage across the two wires. Although a common
signal ground connection is necessary, it is not used to determine the signal state at the
receiver. This results in a high immunity against EMI (electromagnetic interference) and
allows cable lengths of over 1000m, depending on the cable type and baud rate.

Docklight V2.4 User Manual 02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

http://en.wikipedia.org/wiki/Multidrop_bus
http://www.vending.org/technical/MDB_3.0.pdf

Glossary / Terms Used

The EIA Standard RS422-A "Electrical characteristics of balanced voltage digital
interface circuits" defines the characteristics of an RS422 interface.

Transmitter and receiver characteristics according to RS422-A are:

Signal State Transmitter Differential Receiver Differential Voltage
Voltage Vas VaB

Mark (or logical 1) -6V to -2V -6V to -200mV

Space (or logical 0) |+2V to +6V +200mV to 6V

Undefined -2V to +2V -200mV to +200mV

Permitted Common Mode Voltage Vem (mean voltage of A and B terminals with
reference to signal ground): -7V to +7V

11.14 RS485

The RS485 standard defines a balanced two-wire transmission line, which may be

shared as a bus line by up to 32 driver/receiver pairs. Many characteristics of the

transmitters and receivers are the same as RS422. The main differences between

RS422 and RS485 are

e Two-wire (half duplex) transmission instead of four-wire transmission

e Balanced line drivers with tristate capability. The RS485 line driver has an additional
"enable" signal which is used to connect and disconnect the driver to its output
terminal. The term "tristate” refers to the three different states possible at the output
terminal: mark (logical 1), space (logical 0) or "disconnected"

o Extended Common Mode Voltage (Vem) range from -7V to +12V.

The EIA Standard RS485 "Standard for electrical characteristics of generators and
receivers for use in balanced digital multipoint systems" defines the characteristics of
an RS485 system.

11.15 Send Sequence

A Send Sequence is a sequence that can be sent by Docklight. A Send Sequence is
specified by

1. an unique name (e.g. "Set modem speaker volume"),

2. a character sequence (e.g. "41 54 4C 0D OA" in HEX format).

There are two ways to make Docklight send a sequence:

¢ Sending a sequence can be triggered manually by pressing the send button in the
Send Sequences list
(see Main Window).

¢ Sending a sequence may be one possible reaction when Docklight detects a specific
Receive Sequence within the incoming data (see Action).

11.16 Sequence

A sequence consists of one or more 8 bit characters. A sequence can be any part of
the serial communications you are analyzing. It can consist of printable ASCII
characters, but may also include every non-printable character between 0 and 255
decimal.

Example:

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

ATL2 (ASCII format)

41 54 4C 0D 0A (HEX format)

This sequence is a modem command to set the speaker volume on AT compatible
modems. It includes a Carriage Return (OD) and a Line Feed (0OA) character at the end
of the line.

The maximum sequence size in Docklight is 1024 characters.

11.17 Sequence Index

The Sequence Index is the element number of a Send Sequence within the Send
Sequence List, or of a Receive Sequence within the Receive Sequence List. The
Sequence Index is displayed in the upper left corner of the Edit Send Sequence or Edit
Receive Sequence dialog.

11.18 Serial Device Server

A Serial Device Server is a network device that offers one or more serial COM ports
(RS232, RS422/485) and transmits/receives the serial data over an Ethernet network.
Serial Device Servers are a common way for upgrading existing devices that are
controlled via serial port and make them "network-enabled".

11.19 Snapshot

Creating a snapshot in Docklight means generating a display of the serial
communication shortly before and after a Trigger sequence has been detected. This is
useful when testing for a rare error which is characterized by a specific sequence. See
Catching a specific sequence and taking a snapshot... for more information.

11.20 Trigger

A Trigger is a Receive Sequence with the "Trigger" option enabled (see Dialog: Edit
Receive Sequence). When the Snapshot function is enabled, Docklight will not produce
any output until a trigger sequence has been detected in the serial communication data.
See Catching a specific sequence and taking a snapshot... for more information.

11.21 UART

Universal Asynchronous Receiver / Transmitter. The UART is the hardware component
that performs the main serial communications tasks:

- converting characters into a serial bit stream

- adding start / stop / parity bits, and checking for parity errors on the receiver side

- all tasks related to timing, baud rates and synchronization

Common UARTSs are compatible with the 16550A UART. They include a 16 byte buffer
for incoming data (RX FiFo), and a 16 byte buffer for outgoing data (TX FiFo). Usually
these buffers can be disabled/enabled using the Windows Device Manager and
opening the property page for the appropriate COM port (e.g. COM1).

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

11.22 Virtual Null Modem

A virtual null modem is a PC software driver which emulates two serial COM ports that
are connected by a null modem cable. If one PC application sends data on one virtual
COM port, a second PC application can receive this data on the second virtual COM
port and vice versa.

By using a virtual null modem driver on your PC you can easily debug and simulate
serial data connections without the use of real RS232 ports and cables.

Virtual COM connections do not give you the same timing as real RS232 connections
and usually do not emulate the actual bit-by-bit transmission using a predefined baud
rate. Any data packet sent on the first COM port will appear in the second COM port's
receive buffer almost immediately. For most debugging and simulation purposes, this
limitation can be easily tolerated. Some virtual null modem drivers offer an additional
baud rate emulation mode, where the data transfer is delayed to emulate a real RS232
connection and its limited transmission rate.

For an Open Source Windows solution that has been successfully tested with Docklight,
see

https://sourceforge.net/projects/comOcom/

We recommend the comOcom v2.2.2.0 signed x64 version, which we tested
successfully Windows 10 and Windows 17:
https://sourceforge.net/projects/com0Ocom/files/comOcom/2.2.2.0/comOcom-2.2.2.0-x64-
fre-signed.zip/download

11.23 Wildcard

A wildcard is a special character that serves as a placeholder within a sequence. It may
be used for Receive Sequences when parts of the received data are unspecified, e.g.
measurement readings reported by a serial device. Wildcards can also be used to
support parameters in a Send Sequence.

The following types of wildcards are available in Docklight:

Wildcard "?' (F7): Matches exactly one arbitrary character (any ASCII code between 0
and 255)

Wildcard "# (F8): Matches zero or one character. This is useful for supporting variable
length command arguments (e.g. a status word) in Send / Receive Sequences. See
Checking for sequences with random characters or Sending commands with
parameters for examples and additional information.

Other placeholders that allow random data:

Function Character '!"' (F12): Bitwise comparison. This is useful if there are one or
several bits within a character which should be tested for a certain value. See Function
character "M (F12) - bitwise comparisons for details and an example.

Docklight V2.4 User Manual 02/2023 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

https://sourceforge.net/projects/com0com/
https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-fre-signed.zip/download
https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-fre-signed.zip/download

	Table of Contents
	Copyright
	Introduction
	Docklight - Overview
	Typical Applications
	System Requirements

	User Interface
	Main Window
	Clipboard - Cut, Copy & Paste
	Documentation Area

	Features and Functions
	How Serial Data Is Processed and Displayed
	Editing and Managing Sequences

	Working with Docklight
	Testing a Serial Device or a Protocol Implementation
	Simulating a Serial Device
	Monitoring Serial Communications Between Two Devices
	Catching a Specific Sequence and Taking a Snapshot of the Communication
	Logging and Analyzing a Test
	Checking for Sequences With Random Characters (Receive Sequence Wildcards)
	Saving and Loading Your Project Data

	Working with Docklight (Advanced)
	Sending Commands With Parameters (Send Sequence Wildcards)
	How to Increase the Processing Speed and Avoid "Input Buffer Overflow" Messages
	How to Obtain Best Timing Accuracy
	Calculating and Validating Checksums
	Controlling and Monitoring RS232 Handshake Signals
	Creating and Detecting Inter-Character Delays
	Setting and Detecting a "Break" State

	Examples and Tutorials
	Testing a Modem - Sample Project: ModemDiagnostics.ptp
	Reacting to a Receive Sequence - Sample Project: PingPong.ptp
	Modbus RTU With CRC checksum - Sample Project: ModbusRtuCrc.ptp

	Reference
	Menu and Toolbar
	Dialog: Edit Send Sequence
	Dialog: Edit Receive Sequence
	Dialog: Start Logging / Create Log File(s)
	Dialog: Customize HTML Output
	Dialog: Find Sequence
	Dialog: Send Sequence Parameter
	Dialog: Project Settings - Communication
	Dialog: Project Settings - Flow Control
	Dialog: Project Settings - Communication Filter
	Dialog: Options
	Dialog: Expert Options
	Keyboard Console
	Checksum Specification

	Support
	Web Support and Troubleshooting
	E-Mail Support

	Appendix
	ASCII Character Set Tables
	Hot Keys
	RS232 Connectors / Pinout
	Standard RS232 Cables
	Docklight Monitoring Cable RS232 SUB D9
	Docklight Tap
	Docklight Tap Pro / Tap 485

	Glossary / Terms Used
	Action
	Break
	Character
	CRC
	DCE
	DTE
	Flow Control
	LIN
	Modbus
	Multidrop Bus (MDB)
	Receive Sequence
	RS232
	RS422
	RS485
	Send Sequence
	Sequence
	Sequence Index
	Serial Device Server
	Snapshot
	Trigger
	UART
	Virtual Null Modem
	Wildcard

