
Docklight Scripting V2.4 User Manual
02/2023

Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

2

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

1. Copyright

 7

2. Introduction

 9

2.1 Docklight - Overview .. 10

2.2 Docklight Scripting - Overview ... 10

2.3 Typical Applications ... 11

2.4 System Requirements ... 12

3. User Interface

 14

3.1 Main Window (Scripting) ... 15

3.2 Clipboard - Cut, Copy & Paste ... 16

3.3 Documentation Area .. 16

4. Features and Functions

 18

4.1 How Serial Data Is Processed and Displayed .. 19

4.2 Editing and Managing Sequences .. 19

5. Working with Docklight

 21

5.1 Testing a Serial Device or a Protocol Implementation ... 22

5.2 Simulating a Serial Device .. 23

5.3 Monitoring Serial Communications Between Two Devices 25

5.4 Catching a Specific Sequence and Taking a Snapshot of the Communication 27

5.5 Logging and Analyzing a Test ... 27

5.6 Checking for Sequences With Random Characters (Receive Sequence
Wildcards) ... 28

5.7 Saving and Loading Your Project Data, Script, and Options 31

6. Working with Docklight (Advanced)

 33

6.1 Sending Commands With Parameters (Send Sequence Wildcards) 34

6.2 How to Increase the Processing Speed and Avoid "Input Buffer Overflow"
Messages ... 35

6.3 How to Obtain Best Timing Accuracy .. 36

6.4 Calculating and Validating Checksums ... 36

6.5 Controlling and Monitoring RS232 Handshake Signals .. 38

6.6 Creating and Detecting Inter-Character Delays .. 42

6.7 Setting and Detecting a "Break" State .. 44

6.8 Testing a TCP Server Device (Scripting) ... 45

6.9 Monitoring a Client/Server TCP Connection (Scripting) ... 46

7. Examples and Tutorials

 49

3

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

7.1 Testing a Modem - Sample Project: ModemDiagnostics.ptp 50

7.2 Reacting to a Receive Sequence - Sample Project: PingPong.ptp 51

7.3 Modbus RTU With CRC checksum - Sample Project: ModbusRtuCrc.ptp 52

8. Examples and Tutorials (Scripting)

 55

8.1 Automated Modem Testing - Sample Script: ModemScript.pts 56

8.2 Startup From Command Line - Sample Script: LogStartupScript.pts 59

8.3 Manipulating a RS232 Data Stream - Sample Script:
CharacterManipulation.pts .. 60

8.4 TCP/IP Communications - Sample Projects PingPong_TCP_Server/Client.ptp 61

9. Reference

 62

9.1 Menu and Toolbar (Scripting) .. 63

9.2 Dialog: Edit Send Sequence ... 65

9.3 Dialog: Edit Receive Sequence ... 66

9.4 Dialog: Start Logging / Create Log File(s) .. 67

9.5 Dialog: Customize HTML Output ... 68

9.6 Dialog: Find Sequence .. 69

9.7 Dialog: Send Sequence Parameter .. 70

9.8 Dialog: Project Settings - Communication .. 70

9.9 Dialog: Project Settings - Flow Control ... 74

9.10 Dialog: Project Settings - Communication Filter ... 74

9.11 Dialog: Options ... 75

9.12 Dialog: Expert Options ... 76

9.13 Keyboard Console .. 78

9.14 Checksum Specification .. 78

10. Reference (Scripting)

 82

10.1 VBScript Basics .. 83

10.1.1 Copyright Notice .. 84

10.1.2 Control Structures ... 84
10.1.2.1 Decision Structures ... 84

10.1.2.2 Loop Structures ... 85

10.1.3 Variables, Arrays, Constants and Data Types ... 86

10.1.4 Operators ... 88

10.1.5 Date/Time Functions ... 89

10.1.6 Miscellaneous .. 91

10.2 Docklight Script Commands - The DL Object .. 93

10.2.1 Methods ... 94
10.2.1.1 AddComment ... 94

10.2.1.2 ClearCommWindows .. 95

10.2.1.3 GetReceiveCounter .. 95

4

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

10.2.1.4 GetDocklightTimeStamp ... 96

10.2.1.5 OpenProject ... 97

10.2.1.6 Pause ... 98

10.2.1.7 Quit ... 99

10.2.1.8 ResetReceiveCounter .. 99

10.2.1.9 SendSequence .. 100

10.2.1.10 StartCommunication .. 102

10.2.1.11 StopCommunication ... 102

10.2.1.12 StartLogging ... 102

10.2.1.13 StopLogging ... 104

10.2.1.14 WaitForSequence .. 105

10.2.2 Methods (Advanced) ... 106
10.2.2.1 CalcChecksum .. 106

10.2.2.2 ConvertSequenceData .. 109

10.2.2.3 GetChannelSettings .. 111

10.2.2.4 GetChannelStatus ... 112

10.2.2.5 GetCommWindowData .. 114

10.2.2.6 GetEnvironment .. 114

10.2.2.7 GetHandshakeSignals ... 116

10.2.2.8 GetKeyState ... 117

10.2.2.9 GetReceiveComments .. 118

10.2.2.10 InputBox2 ... 119

10.2.2.11 MsgBox2 ... 119

10.2.2.12 LoadProgramOptions .. 120

10.2.2.13 PlaybackLogFile ... 121

10.2.2.14 SaveProgramOptions .. 123

10.2.2.15 SetChannelSettings ... 124

10.2.2.16 SetContentsFilter .. 127

10.2.2.17 SetHandshakeSignals .. 128

10.2.2.18 SetUserOutput ... 129

10.2.2.19 SetWindowLayout ... 130

10.2.2.20 ShellRun .. 131

10.2.2.21 UploadFile .. 133

10.2.3 Properties .. 134
10.2.3.1 NoOfSendSequences ... 134

10.2.3.2 NoOfReceiveSequences .. 135

10.3 OnSend / OnReceive Event Procedures .. 135

10.3.1 Sub DL_OnSend() - Send Sequence Data Manipulation 136

10.3.2 Sub DL_OnReceive() - Evaluating Receive Sequence Data 138

10.3.3 OnSend / OnReceive - Timing and Program Flow .. 143

10.4 FileInput / FileOutput Objects for Reading and Writing Files 145

10.4.1 FileInput - Reading Files .. 145

10.4.2 FileOutput - Writing Files .. 147

10.4.3 Multiple Input Files / Multiple Output Files .. 148

10.5 Side Channels - Using Multiple Data Connections ... 148

10.5.1 OpenSideChannel / CloseSideChannel - Managing multiple channels 148

10.5.2 DirectSend .. 150

10.6 Debug Object / Script Debugging .. 151

5

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

10.7 #include Directive ... 153

10.8 Command Line Syntax .. 153

10.9 Dialog: Customize / External Editor .. 154

11. Support

 157

11.1 Web Support and Troubleshooting ... 158

11.2 E-Mail Support .. 158

12. Appendix

 159

12.1 ASCII Character Set Tables ... 160

12.2 Hot Keys .. 162

12.3 RS232 Connectors / Pinout .. 164

12.4 Standard RS232 Cables ... 166

12.5 Docklight Monitoring Cable RS232 SUB D9 ... 169

12.6 Docklight Tap .. 170

12.7 Docklight Tap Pro / Tap 485 .. 171

13. Glossary / Terms Used

 173

13.1 Action .. 174

13.2 Break ... 174

13.3 Character ... 174

13.4 CRC .. 174

13.5 DCE .. 175

13.6 DTE .. 175

13.7 Flow Control ... 175

13.8 HID ... 175

13.9 LIN .. 176

13.10 Modbus ... 176

13.11 Multidrop Bus (MDB) ... 176

13.12 Named Pipe .. 176

13.13 Receive Sequence ... 176

13.14 RS232 ... 177

13.15 RS422 ... 177

13.16 RS485 ... 177

13.17 Send Sequence .. 178

13.18 Sequence ... 178

13.19 Sequence Index ... 178

13.20 Serial Device Server .. 179

13.21 Snapshot ... 179

6

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Table of Contents

13.22 TCP .. 179

13.23 Trigger ... 179

13.24 UART .. 179

13.25 UDP ... 179

13.26 Virtual Null Modem .. 180

13.27 Wildcard .. 180

0Index

Copyright

8

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Copyright

1 Copyright

Copyright 2002-2023 Flachmann und Heggelbacher GmbH & Co. KG and
Kickdrive Software Solutions

All rights reserved. No parts of this work may be reproduced in any form or by any
means - graphic, electronic, or mechanical, including photocopying, recording, taping,
or information storage and retrieval systems - without the written permission of the
publisher.

Trademarks

Products that are referred to in this document may be either trademarks and/or
registered trademarks of the respective owners. The publisher and the author make no
claim to these trademarks.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Disclaimer

While every precaution has been taken in the preparation of this document, the
publisher and the author assume no responsibility for errors or omissions, or for
damages resulting from the use of information contained in this document or from the
use of programs and source code that may accompany it. In no event shall the
publisher and the author be liable for any loss of profit or any other commercial damage
caused or alleged to have been caused directly or indirectly by this document.

Contact

E-Mail Support: support@docklight.de
www.docklight.de

Flachmann und Heggelbacher GmbH & Co. KG
Waldkirchbogen 27
D-82061 Neuried
Germany
www.fuh-edv.de

Kickdrive Software Solutions e.K.
Robert-Bosch-Str. 5
D-88677 Markdorf
Germany
www.kickdrive.de

mailto:support@docklight.de
https://docklight.de
http://www.fuh-edv.de
http://www.kickdrive.de

Introduction

10

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Introduction

2 Introduction

2.1 Docklight - Overview

Docklight is a testing, analysis, and simulation tool for serial communication protocols
(RS232, RS485/422 and others). It allows you to monitor communications between two
serial devices or to test the serial communication of a single device. Docklight is easy to
use and works on almost any standard PC running Windows 11, Windows 10,
Windows 8, or Windows 7.

Docklight's key functions include
· simulating serial protocols - Docklight can send out user-defined sequences

according to the protocol used and it can react to incoming sequences. This makes it
possible to simulate the behavior of a serial communication device, which is
particularly useful for generating test conditions that are hard to reproduce with the
original device (e.g. problem conditions).

· logging RS232 data - All serial communication data can be logged using two
different file formats. Use plain text format for fast logging and storing huge amounts
of data. An HTML file format, with styled text, lets you easily distinguish between
incoming and outgoing data or additional information. Docklight can also log any
binary data stream including ASCII 0 <NUL> bytes and other control characters.

· detecting specific data sequences - In many test cases, you will need to check for
a specific sequence within the RS232 data that indicates a problem condition.
Docklight manages a list of such data sequences for you and can perform user-
defined actions after detecting a sequence, e.g. taking a snapshot of all
communication data before and after the error message was received.

· responding to incoming data - Docklight lets you specify user-defined answers to
the different communication sequences received. This allows you to build a basic
simulator for your serial device within a few minutes. It can also help you to trace a
certain error by sending out a diagnostics command after receiving the error
message.

Docklight will work with the COM communication ports provided by your operating
system. Physically, these ports will be RS232 SUB D9 interfaces in many cases.
However, it is also possible to use Docklight for other communication standards such as
RS485 and RS422, which have a different electrical design to RS232 but follow the
RS232 communication mechanism.

Docklight has also been successfully tested with many popular USB-to-Serial
converters, Bluetooth serial ports, GPS receivers, virtual null modems, Arduino,
MicroPython/pyboard or other Embedded/UART boards that add a COM port in
Windows.

For RS232 full-duplex monitoring applications, we recommend our Docklight Tap USB
accessory or our Docklight Monitoring Cable.

This manual only refers to RS232 serial connections in detail, since this is the basis for
other serial connections mentioned above.

TIP: For getting started, have a look at the Docklight sample projects, which
demonstrate some of the basic Docklight functions.

2.2 Docklight Scripting - Overview

Docklight Scripting is an extended edition of Docklight RS232 Terminal / RS232
Monitor. It features an easy-to-use scripting language, plus a built-in editor to create
and run automated test jobs. A Docklight script allows you to execute all basic Docklight

11

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Introduction

operations (sending predefined data sequences, detecting specific sequences within
the incoming data stream, ...) and embed them in your own test code.

Docklight Scripting is network-enabled. Instead of using a serial COM port, Docklight
Scripting can establish TCP connections (TCP client mode), accept a TCP connection
on a local port (TCP server mode), or act as a UDP peer. It also supports USB HID
connections and Named Pipes.

Docklight Scripting gives you both flexibility and simplicity. Within minutes you can build
your own automated testing tools and create:
· time-controlled test jobs (e.g. sending a diagnostics command every 5 minutes and

reporting an error, if the device response is not OK)
· repeated test cycles (e.g. endurance testing for a motion control / drive system)
· automatic device configuration scripts (e.g. resetting a RS232 device to factory

defaults before delivery)
· fault analysis tools for service and maintenance tasks (e.g. running a set of

diagnostics commands and performing automatic fault analysis)
· protocol testers with automatic checksum calculations (e.g. CRC - Cyclic

Redundancy Codes)
· Docklight startup scripts (e.g. automatically starting a COM port logging task at PC

startup)

Docklight Scripting uses the VBScript engine, allowing you to write your tests in a
simple, well-known scripting language. Docklight's basic functions and features are
made available through a small and convenient set of Docklight script commands.

TIP: For getting started, have a look at the Docklight modem testing script, which
demonstrates the usage of Docklight script commands for an automated modem test. A
simple demonstration for the TCP/IP capabilities can be found in the TCP client/server
sample.

2.3 Typical Applications

Docklight is the ideal tool to support your development and testing process for serial
communication devices. Docklight may be used to

· Test the functionality or the protocol implementation of a serial device.
You may define control sequences recognized by your device, send them, log and
analyze the responses and test the device reaction.

· Simulate a serial device.
Although rare, the possibility of a hardware fault must be considered in most systems.
Imagine you have a device that sends an error message in the case of a hardware
fault. A second device should receive this error message and perform some kind of
reaction. Using Docklight you can easily simulate the error message to be sent and
test the second device's reaction.

12

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Introduction

· Monitor the communication between two devices.
Insert Docklight into the communication link between two serial devices. Monitor and
log the serial communication in both directions. Detect faulty communication
sequences or special error conditions within the monitored communication. Take a
snapshot of the communication when such an error condition has occurred.

2.4 System Requirements

Operating system
· Windows 11, Windows 10, Windows 10 x64, Windows 8, Windows 8 x64,

Windows 7, Windows 7 x64.

Additional requirements
· For RS232 testing or simulation: Minimum one COM port available. Two COM ports

for monitoring communication between two serial devices.
· For low-latency monitoring using Docklight Tap, Docklight Tap Pro or Docklight Tap

485: One USB port.
· For Docklight Scripting TCP or UDP applications: Network with IPv4 addressing.

13

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Introduction

Additional cables or software drivers may be required for connecting the equipment to
be tested. See the sections on Docklight Tap, Docklight Monitoring Cable RS232 SUB
D9, Standard RS232 Cables and virtual null modem drivers.

User Interface

15

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

User Interface

3 User Interface

3.1 Main Window (Scripting)

The main window of Docklight Scripting is divided into five sections:

1. Toolbar and Status
You can select all main Docklight functions from the Toolbar. The status line below
shows additional information about the communication status and the current settings.

2. Send Sequences
Define, edit and manage your Send Sequences here. Use the arrow symbol or the
Space key to send out the selected sequence. Double click on the blank field at the end
of a list to create a new sequence. A context menu (right mouse button) is available to
cut, copy or paste entire Send Sequences to/from the Clipboard. See Editing and
Managing Sequences and Dialog: Edit Send Sequence for more information.

3. Receive Sequences
Define, edit and manage your Receive Sequences here. Double click on the blank field
at the end of a list to create a new sequence. The Receive Sequence list supports the
same reordering and clipboard operations as the Send Sequence list. You can also
copy a Send Sequence to the clipboard and paste it into the Receive Sequence list.
See Editing and Managing Sequences and Dialog: Edit Receive Sequence for more
information.

You can reorder the sequence lists using drag&drop: First, allow reordering the list by

clicking on the small lock icon in the top left corner. When unlocked, the list can
be changed by dragging a sequence to a new position with the left mouse button
pressed.

By clicking the |< mark you can minimize the Send/Receive Sequences area.

4. Communication Window
Displays the outgoing and incoming communication of the serial data connection.
Various display options are available for the communication data, including ASCII /
HEX / Decimal / Binary display, time stamps, and highlighting (see Options). If serial
communication is stopped, all data from the communications window may be copied to
the clipboard or printed. You may also search for specific sequences using the Find

16

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

User Interface

Sequence function. See How Serial Data is Processed and Displayed for more
information.

5.
5a. Project and Sequence Documentation
Type in additional comments concerning your project, or a specific Send Sequence /
Receive Sequence. Docklight presents sequence-specific documentation when you
choose a Send Sequence or Receive Sequence from the list (2. and 3.). Docklight
switches to the main project documentation when you click on the empty bottom line of
the sequence list, or when you click inside the Communication Window (4.).

To avoid accidental editing, the Documentation Area is locked by default and you need

to enable editing by clicking on the small lock icon above it. When unlocked, you
can edit/copy/paste/delete its contents freely.

5b. Script
Edit your Docklight script code here. A context menu (right mouse button) is available to
cut, copy, paste, delete, or find/replace code. For advanced editing features, support
for external editors is available. For more information about creating Docklight scripts,
see the Docklight Scripting Reference.

By clicking the v mark on the right side you can minimize the documentation/script
area.

3.2 Clipboard - Cut, Copy & Paste

Docklight supports Cut/Copy/Paste operations. Clipboard operations are available in the
· Main Window - Send Sequences
· Main Window - Receive Sequences
· Main Window - Communication
· Main Window - Documentation
· Main Window - Script Editor (Docklight Scripting only)
· Dialog: Edit Send Sequence
· Dialog: Edit Receive Sequence
· Dialog: Find Sequence
· Dialog: Send Sequence Parameter
· Documentation Area
· Keyboard Console

You can cut a serial data sequence from the communication window and create a new
Send or Receive Sequence by pasting it into the appropriate list. Or edit a Send
Sequence, copy a part of this sequence to the clipboard and create a new Receive
Sequence from it by pasting it into the Receive Sequence window.

TIP: Use the right mouse button context menu for Cut/Copy/Paste operations or the
related Keyboard Hotkey.

3.3 Documentation Area

Docklight offers documentation areas in the lower right part of the main window and in
the Edit Send Sequence or Edit Receive Sequence dialogs.

You can use these areas to write down additional notes concerning your Docklight
application. E.g., how to use the Send / Receive Sequences and sequence parameters,
or notes on additional test equipment, etc.

17

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

User Interface

The documentation contents are stored and loaded along with all other Docklight project
settings (see saving and loading your project data, scripts, and options).

TIP: The documentation areas are simple text boxes without formatting menus or tools.
For formatted documentation including pictures and tables, you can prepare your
documentation in Windows WordPad or Microsoft Word and use copy&paste to add it
to the Docklight documentation area.

Features and Functions

19

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Features and Functions

4 Features and Functions

4.1 How Serial Data Is Processed and Displayed

Docklight handles all serial data in an 8 bit-oriented way. Every sequence of serial data
consists of one or more 8 bit characters. Docklight allows you to
· display the serial data in either ASCII, HEX, Decimal or Binary format
· copy serial data to the clipboard and paste it into a standard text file or a formatted

Microsoft® Word document, or create a Send / Receive Sequence using the data.
· print out serial data, user comments and other information

Docklight's communication window shows the current communication on the selected
serial port(s). Docklight distinguishes between two communication channels (channel 1
and channel 2), which represent the incoming and outgoing data in Send/Receive Mode
or the two communication channels being observed in Monitoring Mode. Channel 1 and
channel 2 data are displayed using different colors or fonts, and the communication
data may be printed or stored as a log file in plain text or HTML format.

Besides the serial data, Docklight inserts date/time stamps into the communication
display. By default, a date/time stamp is inserted every time the data flow direction
switches between channel 1 and channel 2, or before a new Send Sequence is
transmitted. There are several options available for inserting additional time stamps. This
is especially useful when monitoring a half-duplex line with only one communication
channel. See Options --> Date/Time Stamps

Docklight is able to process serial data streams containing any ASCII code 0 - 255
decimal. Since there are non-printing control characters (ASCII code < 32) and
different encodings for ASCII code > 127, not all of these characters can be displayed
in the ASCII text window. Nonetheless, all characters will be processed properly by
Docklight and can be displayed in HEX, Decimal or Binary format. Docklight will
process the serial data on any language version of the Windows operating system in
the same way, although the ASCII display might be different. For control characters
(ASCII code < 32), an additional display option is available to display their text
equivalent in the communication window. See Options dialog and Appendix, ASCII
Character Set Tables.

Docklight allows you to suppress all original serial data, if you are running a test where
you do not need to see the actual data, but only the additional evaluations generated
using Receive Sequences. See the Project Settings for Communication Filter.

4.2 Editing and Managing Sequences

A Docklight project mainly consists of user-defined sequences. These may be either
Send Sequences, which may be transmitted by Docklight itself, or Receive Sequences,
which are used to detect a special message within the incoming serial data.

Sequences are defined using the Edit Send Sequence or Edit Receive Sequence dialog
window. This dialog window is opened
1. by choosing Edit from the context menu available using the right mouse button.
2. by double-clicking on an existing sequence or pressing Ctrl + E with the Send
Sequence or Receive Sequence list selected.
3. when creating a new sequence by double-clicking on the blank field at the end of a
list (or pressing Ctrl + E).
4. when pasting a new sequence into the sequence list.

Docklight supports the use of wildcards (e.g. wildcard "?" as a placeholder for one
arbitrary character) within Receive Sequences and Send Sequences. See the sections

20

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Features and Functions

sending commands with parameters and checking for sequences with random
characters for details and examples.

Working with Docklight

22

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

5 Working with Docklight

5.1 Testing a Serial Device or a Protocol Implementation

Preconditions

· You need the specification of the protocol to test, e.g. in written form.
· The serial device to test should be connected to one of the PC's COM ports. See

section Standard RS232 Cables for details on how to connect two serial devices.
· The serial device must be ready to operate.

Performing the test

A) Creating a new project

Create a new Docklight project by selecting the menu File > New Project

B) Setting the Communication Options

1. Choose the menu Tools > Project Settings...
2. Choose communication mode Send/Receive
3. At Send/Receive on comm. channel, set the COM Port where your serial device

is connected.
4. Set the baud rate and all other COM Port Settings required.
5. Confirm the settings and close the dialog by clicking the OK button.

C) Defining the Send Sequences to be used
You will probably test your serial device by sending specific sequences, according to
the protocol used by the device, and observe the device's reaction. Perform the
following steps to create your list of sequences:

1. Double click on the last line of the Send Sequences table. The Edit Send Sequence
dialog is displayed (see also Editing and Managing Sequences).

2. Enter a Name for the sequence. The sequence name should be unique for every
Send Sequence defined.

3. Enter the Sequence itself. You may enter the sequence either in ASCII, HEX,
Decimal or Binary format. Switching between the different formats is possible at
any time using the Edit Mode radio buttons.

4. After clicking the OK button the new sequence will be added to the Send Sequence
lists.

Repeat steps 1 - 4 to define the other Send Sequences needed to perform your test.

D) Defining the Receive Sequences used
If you want Docklight to react when receiving specific sequences, you have to define a
list of Receive Sequences.

23

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

1. Double click on the last line of the Receive Sequences table. The dialog Edit
Receive Sequence is displayed. The dialog consist of three parts: Name field,
Sequence field, and Action field.

2. Edit the Name and Sequence fields.
3. Specify an Action to perform after the sequence has been received by Docklight.

There are four types of actions available:
Answer - After receiving the sequence, transmit one of the Send Sequences.
Comment - After receiving the sequence, insert a user-defined comment into the
communication window (and log file, if available).
Trigger - This is an advanced feature described in Catching a specific
sequence...
Stop - After receiving the sequence, Docklight stops communications.

4. Click the OK button to add the new sequence to the list.

Repeat steps 1 - 4 to define the other Receive Sequences you need to perform your
test.

E) Storing the project
Before running the actual test, it is recommended that the communication settings and

sequences defined be stored. This is done using the menu File > Save Project.

F) Running the test

Start Docklight by choosing Run > Start Communication.

Docklight will open a serial connection according to the parameters specified. It will then
display all incoming and outgoing communication in the communication window. Use the

 Send button to send one of the defined sequences to the serial device. The on-
screen display of all data transfer allows you to check the device's behavior. All protocol
information can be logged in a text file for further analysis. Please see section Logging
and analyzing a test.

TIP: Using the Documentation Area , you can easily take additional notes, or copy &
paste parts of the communication log for further documentation.

5.2 Simulating a Serial Device

Preconditions

24

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

· You need the specification of the behavior of the serial device you want to simulate,
e.g. what kind of information is sent back after receiving a certain command.

· A second device is connected to a PC COM port, which will communicate with your
simulator.

This second device and its behavior is the actual object of interest. An example could be
a device that periodically checks the status of an UPS (Uninterruptible Power Supply)
using a serial communication protocol. You could use Docklight to simulate basic UPS
behavior and certain UPS problem cases. This is very useful when testing the other
device, because it can be quite difficult to reproduce an alarm condition (like a bad
battery) at the real UPS.

NOTE: The second device may also be a second software application. It is possible to
run both Docklight and the software application on the same PC. Simply use a different
COM port for each of the two applications and connect the two COM ports using a
RS232 null modem cable. You can also use a virtual null modem for this purpose.

Performing the test

A) Creating a new project

Create a new Docklight project by selecting the menu File > New Project

B) Setting the Communication Options

1. Choose the menu Tools > Project Settings...
2. Choose communication mode Send/Receive
3. At Send/Receive on comm. channel, set the COM Port where your serial device

is connected.
4. Set the baud rate and all other COM Port Settings required.
5. Confirm the settings and close the dialog by clicking the OK button.

C) Defining the Send Sequences used
Define all the responses of your simulator. Think of responses when the simulated
device is in normal conditions, as well as responses when in fault condition. In the UPS
example mentioned above, a battery failure would be such a problem case that is hard
to reproduce with the original equipment. To test how other equipment reacts to a
battery failure, define the appropriate response sequence your UPS would send in this
case.

NOTE: See Testing a serial device... to learn how to define Send Sequences.

D) Defining the Receive Sequences used
In most cases, your simulated device will not send unrequested data, but will be polled
from the other device. The other device will use a set of predefined command
sequences to request different types of information. Define the command sequences
that must be interpreted by your simulator here.

For every command sequence defined, specify Answer as an action. Choose one of
the sequences defined in C). If you want to use two or more alternative response
sequences, make several copies of the same Receive Sequence, give them a different
name (e.g. "status cmd - answer ok", "status cmd - answer battery failure", "status cmd
- answer mains failure") and assign different Send Sequences as an action. In the
example, you would have three elements in the Receive Sequences list that would
respond to the same command with three different answers. During the test you may
decide which answer should be sent by checking or unchecking the list elements using
the Active column.

25

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

E) Storing the project
Before running the actual test, it is recommended that the communication settings and

sequences defined be stored. This is done using the menu File > Save Project.

F) Running the test

Start Docklight by choosing Run > Start Communication.

Docklight will now respond to all commands received from the connected serial device.
The on-screen data transfer display allows you to monitor the communications flow. All
protocol information can be logged to a text file for further analysis. See section
Logging and analyzing a test.

TIP: Using the Documentation Area, you can easily take additional notes, or copy &
paste parts of the communication log for further documentation.

5.3 Monitoring Serial Communications Between Two Devices

Preconditions

· A Docklight Monitoring Cable, Docklight Tap, or Docklight Tap Pro/485 is required to
tap the RS232 TX signals of both serial devices and feed them into Docklight, while
not interfering with the communications between the devices.

· For a Docklight Monitoring Cable setup, two COM ports must be available on your PC
for monitoring. Each port will receive the data from one of the serial devices being
monitored.

· Device 1 and Device 2 must be ready to operate.

Performing the test

A) Creating a new project

Create a new Docklight project by selecting the menu File > New Project

B) Setting the Communication Options

1. Choose the menu Tools > Project Settings...

26

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

2. Choose communication mode Monitoring

Alternative I - Using Docklight Monitoring Cable:

3. At Receive Channel 1, set the COM Port where the monitoring signal from serial
device 1 is received. At Receive Channel 2, set the COM port for the second
device.

NOTE: In Docklight Monitoring Mode, all received data from one COM port is re-
sent on the TX channel of the opposite COM port ("Data Forwarding"). This does
not have any effect on Docklight Monitoring Cable setups, since the TX signal is not
connected. But it can be useful for special applications where you need to route the
serial data traffic through Docklight using standard RS232 cabling. If you require a
pure passive monitoring behavior where no TX data appears, you can disable the
"Data Forwarding" using the menu Tools > Expert Options...

Alternative II - Using Docklight Tap

3. At Receive Channel 1, open the dropdown list, scroll down to the -- USB Taps --
section and choose the first Tap port, e.g. TAP0. At Receive Channel 2, the
second tap port (e.g. TAP1) is selected automatically.

Alternative III - Using Docklight Tap Pro / Docklight Tap 485:

3. At Receive Channel 1, open the dropdown list, scroll down to the -- USB Taps --
section and choose the first VTP Tap port, e.g. VTP0. At Receive Channel 2, the
second VTP tap port (e.g. VTP1) is selected automatically.

4. Set the baud rate and all other communication parameters for the protocol being
used.

NOTE: Make sure your PC's serial interfaces port works properly at the baud rate
and for the communication settings used by Device 1 and Device 2. If Device 1
and 2 use a high-speed data transfer protocol, the PC's serial interfaces and the
Docklight software itself might be too slow to receive all data properly.

5. Confirm the settings and close the dialog by clicking the OK button.

C) Defining the Receive Sequences used
Define Receive Sequences, which should be marked in the test protocol or trigger an
action within Docklight. Docklight checks for Receive Sequence on both monitoring
channels, i.e. it does not matter whether the sequences come from serial device 1 or
serial device 2.

NOTE: Since a special monitoring cable is used for this test, all communication between
serial device 1 and serial device 2 will remain unbiased and no additional delays will be
introduced by Docklight itself. This is particularly important when using Docklight for
tracking down timing problems. This means, however, that there is no way to influence
the serial communication between the two devices. While communication mode
Monitoring is selected, it is not possible to use Send Sequences.

D) Storing the project
Before running the actual test, it is recommended to store the communication settings

and sequences defined. This is done using the menu File > Save Project.

E) Running the test

Start Docklight by choosing Run > Start Communication, then activate the serial
devices 1 and 2 and perform a test run. Docklight will display all communication
between serial device 1 and serial device 2. Docklight uses different colors and font

27

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

types to make it easy to distinguish between data transmitted by device 1 or device 2.

The colors and font types can be chosen in the Display tab of the Tools >
 Options... dialog.

TIP: The Snapshot Function allows you to locate a rare sequence or error condition
in a communication protocol with a large amount of data.

TIP: See the sections How to Increase the Processing Speed... and How to Obtain Best
Timing Accuracy to learn how to adjust Docklight for applications with high amounts of
data, or increased timing accuracy requirements.

5.4 Catching a Specific Sequence and Taking a Snapshot of the
Communication

When monitoring serial communications between two devices, you might want to test for
a rare error and the interesting parts would be just the serial communication before and
after this event. You could look for this situation by logging the test and searching the
log files for the characteristic error sequence. This could mean storing and analyzing
several MB of data when you are actually just looking for a few bytes though, if they
appeared at all. As an alternative, you can use the Snapshot feature as described
below.

Preconditions

· Docklight is ready to run a test as described in the previous use cases, e.g.
monitoring serial communications between two devices.

Taking a snapshot

A) Defining a trigger for the snapshot
1. Define the sequence that appears in your error situation as a Receive Sequence.
2. Check the Trigger tab in the "action" part of the Receive Sequence dialog: The

trigger option must be enabled if this is the sequence that you want to track down.

NOTE: Do not forget to disable the trigger option for all other Receive Sequences that
should be ignored in your test so that they do not trigger the snapshot.

B) Creating a snapshot

Click on the Snapshot button of the toolbar. Docklight will start communications, but
will not display anything in the communication window. If the trigger sequence is
detected, Docklight will display communication data before and after the trigger event.
Further data is processed, until the trigger sequence is located roughly in the middle of
the communication window. Docklight will then stop communication and position the
cursor at the trigger sequence.

5.5 Logging and Analyzing a Test

Preconditions

· Docklight is ready to run a test as described in the previous use cases, e.g.
Testing a serial device or a protocol implementation

28

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

Logging the test

Click on the Start Logging button on the main toolbar.

A dialog window will open for choosing log file settings.

For each representation (ASCII, HEX, ...), a separate log file may be created. Choose
at least one representation. Log files will have a ".txt", ".htm" or ".rtf" file extension,
depending on your file format choice. Docklight also adds the representation type to the
file name to distinguish the different log files. E.g. if the user specifies "Test1" as the
base log file name, the plain text ASCII file will be named "Test1_asc.txt", whereas an
RTF HEX log file will be named "Test1_hex.rtf".

Confirm your log file settings and start logging by clicking the OK button.

To stop logging and close the log file(s), click the Stop Logging button on the main
toolbar. Unless the log file(s) have been closed, it is not possible to view their entire
contents.

TIP: If you have additional requirements for your log file format, e.g starting a new file
every hour, you can use a Docklight script and the StartLogging method for this
purpose. See also the LogFileNamesTimestamp.zip sample script (folder
Extra\LogFileNamesTimestamp in your Script Samples directory).

5.6 Checking for Sequences With Random Characters (Receive
Sequence Wildcards)

Many serial devices support a set of commands to transmit measurement data and other
related information. In common text-based protocols the response from the serial device
consists of a fixed part (e.g. "temperature="), and a variable part, which is the actual
value (e.g "65F"). To detect all these responses correctly in the serial data stream, you
can define Receive Sequences containing wildcards.

Take, for example, the following situation: A serial device measures the temperature and
periodically sends the actual reading. Docklight shows the following output:
07/30/2012 10:20:08.022 [RX] - temperature=82F<CR>
07/30/2012 10:22:10.558 [RX] - temperature=85F<CR>
07/30/2012 10:24:12.087 [RX] - temperature=93F<CR>
07/30/2012 10:26:14.891 [RX] - temperature=102F<CR>
...

Defining an individual Receive Sequence for every temperature value possible would not
be a practical option. Instead you would define one Receive Sequence using wildcards.
For example:
t | e | m | p | e | r | a | t | u | r | e | = | ? | # | # | F | r
("r" is the terminating <CR> Carriage Return character)

This ReceiveSequence would trigger on any of the temperature strings listed above. It
allows a 1-3 digit value for the temperature (i.e. from "0" to "999"). The following step-
by-step example describes how to define the above sequence. See also the additional
remarks at the end of this section for some extra information on '#' wildcards.

NOTE: See Calculating and Validating Checksums on how to receive and validate
checksum data, e.g. CRCs. There are no wildcards required for checksum areas.
Instead, use some default character values, e.g. "00 00" in HEX representation.

29

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

Preconditions

· Docklight is ready to run a test as described in the previous use cases, e.g. testing a
serial device or a protocol implementation.

· The serial device (the temperature device in our example) is operating.

Using Receive Sequences with wildcards

A) Preparing the project
Create a new Docklight project and set up all communication parameters.

B) Defining the Receive Sequences used
1. Create a new Receive Sequence. Enter a Name for the sequence.
2. Enter the fixed part of your expected answer in the Sequence section. For our

example you would enter the following sequence in ASCII mode:
t | e | m | p | e | r | a | t | u | r | e | =

3. Open the popup / context menu using the right mouse button, and choose
Wildcard '?' (matches one character) to insert the first wildcard at the cursor
position. Add two '#' wildcards using the popup menu Wildcard '#' (matches zero
or one character). The sequence now looks like this:
t | e | m | p | e | r | a | t | u | r | e | = | ? | # | #

4. Enter the fixed tail of our temperature string, which is a letter 'F' and the terminating
<CR> character. You can use the default control character shortcut Ctrl+Enter to
enter the <CR> / ASCII code 13. The sequence is now:
t | e | m | p | e | r | a | t | u | r | e | = | ? | # | # | F | r

5. Specify an Action to perform after a temperature reading has been detected.
6. Click OK to add the new sequence to the Receive Sequence list.

NOTE: To distinguish the wildcards '?' and '#' from the regular question mark or number
sign characters (decimal code 63 / 35), the wildcards are shown on a different
background color within the sequence editor.

C) Running the test

Start Docklight by choosing Run > Start Communication.

Docklight will now detect any temperature reading and perform the specified action.

NOTE: The DL_OnReceive() event procedure allows further evaluation and processing
of the actual measurement data received.

Additional notes on '#' wildcards

1. '#' wildcards at the end of a Receive Sequence have no effect. The Receive
Sequence "HelloWorld###" will behave like a Receive Sequence "HelloWorld".

2. A "match inside a match" is not returned: If a Receive Sequence
"Hello#######World" is defined, and the incoming data is "Hello1Hello2World", the
Receive Sequence detected is "Hello1Hello2World", not "Hello2World".

Receive Sequence comment macros

Macro keywords can be used in the Edit Receive Sequence > 3 - Action > Comment
text box, to create Docklight comment texts with dynamic data, e.g. the actual data
received.

30

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

Macro Is Replaced By

%_S BELL signal. Produce a 'beep sound', depending on your Windows
sound scheme.

%_L Line break

%_T Time stamp for the data received

%_C Docklight channel no. / data direction (1 or 2) for the data received

%_X The channel name or channel alias that corresponds to the data
direction %_C.
E.g. "RX", "TX" or "COM5".

%_I Receive Sequence List Index, see the Dialog: Edit Receive Sequence

%_N Receive Sequence Name

%_A The actual data that triggered this Receive Sequence. Use ASCII
representation

%_H Same as %_A, but in HEX representation

%_D Same as %_A, but in Decimal representation

%_B Same as %_A, but in Binary representation

%_A(1,4) Extended syntax:
Insert only the first 4 characters of this Receive Sequence (start with
Character No. 1, sequence length = 4).

%_H(3,-
1)

Extended Syntax:
Insert everything from the third character until the end of the sequence
(length = -1). Use HEX representation.

Example:
For a Receive Sequence as described above (t | e | m | p | e | r | a | t | u | r | e | = | ?
| # | # | F | r), you could define the following comment text:

New Temp = %_L %_A(13, -3) °F

Docklight output could then look like this:

10/30/2012 10:20:08.022 [RX] - temperature=82F<CR>
 New Temp =
 82 °F
10/30/2012 10:22:10.558 [RX] - temperature=85F<CR>
 New Temp =
 85 °F
10/30/2012 10:24:12.087 [RX] - temperature=93F<CR>
 New Temp =
 93 °F

31

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

5.7 Saving and Loading Your Project Data, Script, and Options

You can specify Docklight Scripting's behavior via three different types of user
configuration data:

· Project Data
· Scripts
· Program Options

Saving and Loading Project Data

The project data includes:
· Send Sequences
· Receive Sequences
· Additional Project Settings: communication mode, COM ports used, COM port settings

(baud rate, parity, ...)
· Documentation contents

The project is saved in a Docklight project file (.ptp file) using the menu File > Save
Project or File > Save Project As...

It is generally recommended to save your project before starting a test run.

NOTE: Saving your project only stores the project's sequences, settings, and
Documentation Area data. If you want to save a log of the communication during a test
run, see section logging and analyzing a test.

Loading a project is done using the File > Open Project... menu.

Saving and Loading Scripts

Docklight script code for automated testing tasks is saved in a separate file (.pts file).
Use the menu Scripting > Save Script or Scripting > Save Script As...

Saving and Loading Program Options

Docklight Options (text formatting, control-character behaviors, a.s.o) can be modified

by using the Docklight Options dialog (menu Tools > Options...).

TIP: When running your script, you may want to use a specific set of Options to ensure
that Docklight creates the communication and log output in a well-defined format. Use
the SaveProgramOptions and LoadProgramOptions methods to create an options file
and load the options at the start of your script.

Using Project and Script Pairs: _auto.pts

In most Docklight Scripting applications, a Docklight script (.pts file) requires an
accompanying project (.ptp file). You can use the following naming scheme to enable
automatic loading and script start:

myproject.ptp
myproject_auto.pts

32

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight

If the two files are located in the same folder, Docklight Scripting will perform the
following additional operations:

· If myproject.ptp is opened (either double-click in Windows Explorer, or using menu

File > Open Project...), Docklight Scripting also opens myproject_auto.pts
alongside, if not already open.

· If myproject_auto.pts is opened, Docklight Scripting also opens myproject.ptp
alongside, if not already open.

· If Start communication is executed, the communication port is opened and the
script is started.

NOTE: If myproject.ptp is opened in Docklight (non-scripting), a warning appears that
this seems to be a project with script support and its use is limited in Docklight (non-
scripting).

NOTE: The OpenProject and StartCommunication script methods are not affected by
the _auto.pts behavior.

Working with Docklight (Advanced)

34

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

6 Working with Docklight (Advanced)

6.1 Sending Commands With Parameters (Send Sequence
Wildcards)

When testing a serial device, the device will most likely support a number of commands
that include a parameter.

Example: A digital camera supports a command to set the exposure time. For setting the
exposure time to 25 milliseconds, you need to send the following sequence:
e | x | p | | 0 | 2 | 5 | r ("r" is a terminating <CR> Carriage Return character)

To avoid defining a new Send Sequence for every exposure time you want to try, you
can use a Send Sequence with wildcards instead:
e | x | p | | ? | ? | ? | r

The following step-by-step example describes how to define an exposure time command
with a parameter and use a different exposure value each time the sequence is sent.

Preconditions

· Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

Performing the test using commands with parameters

A) Preparing the project
Create a new Docklight project and set up all communication parameters.

B) Defining the commands used
1. Create a new Send Sequence. Enter a Name for the sequence.
2. Enter the fixed part of your command in the Sequence section. For our example

you would enter the following sequence in ASCII mode:
e | x | p | |

3. Now open the context menu using the right mouse button, and choose Wildcard
'?' (matches one character) F7 to insert one wildcard at the cursor position. In
our example we would have to repeat this until there are three '?' wildcards for our
three-digit exposure time. The sequence now looks like this:
e | x | p | | ? | ? | ?

4. Now add the terminating <CR> character, using the default control character
shortcut Ctrl+Enter. The example sequence now is
e | x | p | | ? | ? | ? | r

5. Click OK to add the new sequence to the Send Sequence list.

Repeat steps 1 - 5 to define other commands needed to perform your test.

NOTE: To distinguish a '?' wildcard from a question mark ASCII character (decimal
code 63), the wildcard is shown on a different background color within the sequence
editor.

C) Sending a command to the serial device

1. Use the Send button to open the serial communication port and send one
command to the serial device.

35

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

2. The communication pauses and the Send Sequence Parameter dialog pops up,
allowing you to enter the parameter value. In our example, an exposure time, e.g.
"025".

3. Confirm by pressing Enter. The sequence is now sent to the serial device.

It is possible to define commands with several parameters, using several wildcard areas
within one sequence. The Send Sequence Parameter dialog will then appear several
times before sending out a sequence.

NOTE: If you are using Wildcard '?', you must provide exactly one character for each
'?' when sending the sequence. For variable-length parameters use Wildcard
'#' (matches zero or one character) F8.

NOTE: You cannot use a Send Sequence with wildcards as an automatic answer for a
Receive Sequence (see Action).

NOTE: If your Send Sequence requires a checksum, you can define it as described in
Calculating and Validating Checksums. The checksum is calculated after the
wildcard/parameter area has been filled with the actual data, then the resulting
sequence data is handed over to the send queue.

6.2 How to Increase the Processing Speed and Avoid "Input
Buffer Overflow" Messages

When monitoring serial communications between two devices, Docklight cannot control
the amount of incoming data. Since Docklight applies a number of formatting and
conversion rules on the serial data, only a limited number of bytes per seconds can be
processed. There are numerous factors that determine the processing speed, e.g. the
PC and COM devices used, the Display Settings, and the Receive Sequence Actions
defined. It is therefore not possible to specify any typical data rates.

The most time-consuming task for Docklight is the colors&font formatting applied by
default (see the Docklight Display Options). If Docklight cannot keep up with formatting
the incoming data, it will automatically switch to the simpler Plain Text Mode.

If this is still not fast enough to handle the incoming data, Docklight will add the following
message in the Communication Window output and log files.

DOCKLIGHT reports: Input buffer overflow on COM1

TIP: Search for this message using the Find Sequence in Communication
Window... (Ctrl + F) function.

If you are experiencing the above behavior, Docklight offers you several ways to
increase the data throughput.

1. Simplify the display output:

- Deactivate all unneeded Display Modes in the Options... dialog
- Use Plain Text Mode right from the start (see the automatic switch behavior
described above).
- If you are using ASCII mode, disable the Control Characters Description option

2. Log the communication data to a plain text file instead of using the communication
window(s):
- Use the "plain text" Log File Format
- Create only a log file for the Representation (ASCII / HEX / Decimal / Binary) you
actually need

36

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

- Disable the communication windows while logging, using the High Speed Logging
option

3. Use the Communication Filter from the Project Settings... dialog, and disable
the original serial data for one or both communication directions. This is especially
useful if you actually know what you are looking for and can define one or several
Receive Sequences for this pieces of data. These Receive Sequences can print a
comment each time the sequence appears in the data stream so you still know what
has happened, even if the original serial data is not displayed by Docklight.

6.3 How to Obtain Best Timing Accuracy

Many RS232 monitoring applications – including Docklight – can only provide limited
accuracy when it comes to time tagging the serial data. As a result, data from the two
different communication directions can be displayed in chronologically incorrect order,
or several telegrams from one communication direction can appear as one chunk of
data.

This behavior is not caused by poor programming, but is rather characteristic for a
PC/Windows system, and the various hardware and software layers involved.
Unspecified delays and timing inaccuracies can be introduced by:
· The COM device’s chipset, e.g. the internal FIFO (First-In-First-Out) data buffer.
· The USB bus transfer (for USB to Serial converters).
· The serial device driver for Windows.
· The task/process scheduling in a multitasking operating system like Windows.
· The accuracy of the date/time provider.

Docklight comes with a very accurate date/time provider with milliseconds granularity,
but it still needs to accept the restrictions from the hardware and software environment
around it.

Here is what you can do to minimize additional delays and inaccuracies and achieve a
typical time tagging accuracy of 5 milliseconds or better:

1. Get our Docklight Tap for lowest USB-related latency times. Or use on-board
RS232 ports, if still available on your PC.

2. Choose External / High Priority Process Mode in the Tools > Expert Options...
dialog.

3. When monitoring high amounts of data, use the recommendations from the
previous section How to Increase the Processing Speed... to avoid input buffer
overflows and that the computer become irresponsive because of high CPU usage.

NOTE: The Expert Options... recommended above will change the overall system
balance and must be used with care. Best results can be achieved only when Docklight
is Run as administrator. Please make sure you understood the remarks and warning
in the documentation.

4. As an alternative to the above 1.-3.: Use our Docklight Tap Pro or Docklight Tap
485 accessories which use their own Embedded time provider and eliminate PC-
based inaccuracies altogether.

6.4 Calculating and Validating Checksums

Many communication protocols include additional checksum fields to ensure data
integrity and detect transmission errors. A common algorithm is the CRC (Cyclic

37

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Redundancy Code), which is used in different variations for different protocols. The
following step-by-step example describes how to set up on-the-fly checksum calculation
for a Send Sequence, and how to enable automatic validation of a checksum area
within a Receive Sequence.

TIP: For a working example to address a Modbus slave device, see the tutorial Modbus
RTU With CRC checksum.

TIP: See also the DL.CalcChecksum method on how to calculate checksums using
script code as an alternative.

Preconditions

You know the checksum specification for the protocol messages:
· Which area of the sequence data is guarded by a checksum?
· Where is the checksum located? (Usually at the end of the sequence.)
· What checksum algorithm should be used? (Most likely one of the standard CRC

types, or a simple MOD256 sum.)

Using Send Sequences with automatic checksum calculation

A) Defining a Send Sequence that includes a checksum

1. Create a new Send Sequence. Enter a Name for the sequence.

2. Enter the Sequence part of your message in the Sequence section. For example,
here we use a very simple HEX message as our sequence:
01 | 02 | 03 | 04 | ??

Use the context menu via right mouse button or F7 to create the ?? wildcard.

NOTE: See also the Send Sequence Parameter section for more information on
wildcards and parameters.

3. Now add one additional 00 value as a placeholder for the checksum.
01 | 02 | 03 | 04 | ?? | 00

NOTE: In a Send Sequence, you can use any character code from 00-FF as a
placeholder at the positions where the calculated checksum should be inserted
later. This is different from the way it works in a Receive Sequence, where you use
?? wildcards. See the Receive Sequence example below.

4. Go to the Additional Settings | Checksum tab and define the checksum. For
example, here we chose to use MOD256 from the dropdown list.

NOTE: The text field for Checksum allows comments. Everything behind a #
character is just a comment. You can add your own comments to describe what
this checksum is about.

5. Click OK to add the new sequence to the Send Sequence list.

B) Performing the test

6. Use the Send button to send one of the predefined commands. Enter a
parameter value, e.g. 05.

Before sending the data, Docklight calculates the actual MOD256 checksum. The result
goes to the specified checksum position. For MOD256 this is the last character position
by default, which means that the 00 placeholder is overwritten with the checksum result.

38

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

If we use 05 as a parameter when sending the sequence, the data sent by Docklight will
look like this:

18.06.2015 11:07:23.251 [TX] - 01 02 03 04 05 0F

The placeholder has been replaced by the sum over the message bytes:
1 + 2 + 3 + 4 + 5 = 15 or Hex 0F.

Using Receive Sequences with automatic checksum validation

A) Defining a Receive Sequence with checksum

1. Create a new Receive Sequence. Enter a Name for the sequence.

2. Enter the Sequence data, including a wildcard area for both a random payload
byte, plus a wildcard for the checksum. We use the same telegram as in the above
Send Sequence example:
01 | 02 | 03 | 04 | ?? | 00.

3. Go to the Action | Comment tab and enter the following text: Correct checksum

4. Go to the Checksum tab and pick MOD256 in the left dropdown list.

5. Keep the Detect Checksum OK option. It means that the Receive Sequence is
only triggered if the MOD256 checksum byte in the received data is correct.

5. Click OK to confirm the changes

B) Running the test

6. Start communications and send some data telegrams to your Docklight application /
COM port.

The Communication Window output could look like this:

15.02.2016 17:43:28.072 [RX] - 01 02 03 04 05 0F Correct
checksum

15.02.2016 17:43:31.870 [RX] - 01 02 03 04 0F 19 Correct
checksum

15.02.2016 17:43:35.833 [RX] - 01 02 03 04 10 1A Correct
checksum

NOTE: This example showed how to define a Receive Sequence that is triggered by
data telegrams with correct checksum only. It is also possible to do the opposite:
detecting a checksum error. Go to the Checksum tab and change the option Detect
Checksum OK to Checksum Wrong.

6.5 Controlling and Monitoring RS232 Handshake Signals

The Docklight project settings for Flow Control support offer a Manual Mode that allows
you to set or reset the RTS and DTR signals manually by clicking on the corresponding
indicator. The following section describes how to use the Function Character '!' (F11

39

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

key) to change the RTS and DTR signals temporarily within a Send Sequence, or detect
changes for the CTS, DSR, DCD or RI lines using a Receive Sequence.

Preconditions

· Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

· Flow Control Support is set to "Manual" in the project settings.
· The Docklight project already contains one or several Send Sequences, but there is

an additional requirement for changing RTS / DTR signals while sending.

Implementing RTS/DTR signal changes

For our example we assume that we are using a RS485 converter which requires
RS485 Transceiver Control, but uses the DTR signal instead of RTS for switching
between "transmit" and "receive" mode. We further assume there is already a "Test"
Send Sequence which looks like this in ASCII mode:
T | e | s | t

A) Modifying the existing Send Sequence

1. Open the Edit Send Sequence dialog.
2. Switch the Edit Mode to Decimal. Our "Test" example looks like this in decimal

mode:
084 | 101 | 115 | 116

3. Insert an RTS/DTR function character at the beginning: Press F11, or open the
context menu using the right mouse button and choose Function character
'!' (RTS and DTR signals) . The example sequence now reads:
 ! | 084 | 101 | 115 | 116

4. Add the new RTS/DTR state as a decimal parameter value (see below). In our
example we need the DTR signal set to high. We choose "002" as the parameter
value, so the sequence is now:
 ! | 002 | 084 | 101 | 115 | 116

5. Add a RTS/DTR function character at the end of the sequence, and use "000" as
parameter value to reset the DTR signal low. The sequence data is now:
 ! | 002 | 084 | 101 | 115 | 116 | ! | 000

6. Click OK to confirm the changes

NOTE: To distinguish a '!' RTS/DTR function character from a exclamation mark ASCII
character (decimal code 33), the RTS/DTR function character is shown on a different
background color by the sequence editor.

NOTE: The character after a RTS/DTR function character is used to set the RTS / DTR
signals and is not sent to the serial device (see parameter values below).

B) Sending the data with additional DTR control

1. Send the test sequence using the Send button.

Docklight will now set the DTR signal to high, send the ASCII sequence "Test" and then
reset DTR.

NOTE: The RTS/DTR indicators will indicate any changes of the RTS or DTR state.
However, in the above example the DTR is set and reset very quickly, so the DTR
indicator will probably not give any visual feedback. If you want to actually "see" the
DTR behavior, try introducing a small inter-character delay.

40

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Function character '!' (F11) - setting RTS and DTR

Character Value
(Decimal Mode)

RTS DTR

000 Low Low

001 High Low

002 Low High

003 High High

Temporary parity changes / 9 bit applications

Some protocols and applications require a 9th data bit, e.g. for device addressing on a
bus. The only way to talk to such devices using a standard UART with maximum 8 data
bits is to use serial settings that include a parity bit and change this parity bit
temporarily within a Send Sequence. The function character '!' supports additional
parameter values for this purpose:

Character Value
(Decimal Mode)

Parity

016 No parity

032 Odd parity

048 Even parity

064 Mark. Set parity bit to logic '1'

080 Space. Set parity bit to logic '0'

The new parity settings are applied starting with the next regular character, both on the
TX and the RX side. The parity is switched back to the original Communication Settings
after the Send Sequence has been completely transmitted.

NOTE: The most useful parameters for this function character are the "Mark" and
"Space" settings, because they allow you to set the parity bit to a defined value that
effectively serves as a 9th data bit.

NOTE: It is recommended to set the Parity Error Character to "(ignore)", so you can
evaluate incoming data in both cases, 9th bit = high and 9th bit = low.

TIP: See also the SwitchParityDemo.ptp sample project (folder
Extras\ParitySwitch_9BitProtocols in your \Samples directory).

Function character '!' (F11) - detecting handshake signal changes
(CTS, DSR, DCD or RI)

Docklight Scripting detects changes of the handshake signals CTS, DSR, DCD or RI,
but in normal operation these changes are not visible in the Docklight Communication
Window (similar to a Break State).

Using the function character '!' you can make these changes visible, and/or define an
action after detecting such changes. The function character '!' supports the following
parameter values for this purpose:

Character Value
(Decimal Mode)

Handshake Signal

001 CTS = High

002 DSR = High

004 DCD = High

41

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

008 RI (Ring Indicator) = High

NOTE: See also DL.GetHandshakeSignals() for the extended set of signal states
supported in Tap Pro / Tap RS485 applications.

Example Receive Sequence definitions in Decimal Edit Mode:

Receive Sequence
(Decimal Mode)

Description

 ! | 001 triggers when CTS=high, all other signals low

 ! | 006 triggers when CTS=low, DSR=high, DCD=high, RI=low

 ! | ??? triggers on any change of the status lines

For the following example we assume that Docklight is ready to run a test as described
in testing a serial device or a protocol implementation and Flow Control Support is set to
"Manual" in the project settings.

A) Create a new Receive Sequence for detecting handshake signal changes.

1. Open the Edit Receive Sequence dialog.
2. Switch the Edit Mode to Decimal.
3. Insert a 'signals' function character at the beginning: Press F11, or open the

context menu using the right mouse button and choose Function character
'!' (CTS/DSR/DCD/RI changes) .

4. Add the handshake state as a decimal parameter value (see above). In our example
we want to detect when CTS is high, while all other signals are low. This means we
need to enter "001" as the parameter value, so the sequence is now:
 ! | 001

5. Specifiy a Comment for this sequence, e.g. "[CTS = high, DSR/DCD/RI = low]"
6. Click OK to confirm the new sequence

B) Start the test and confirm that Docklight now detects when the CTS line changes
from low to high.

NOTE: This example only works if CTS is the only handshake line with "high" level. For a
more flexible approach, you can define the character after the '!' function character as
a wildcard, and use the DL_OnReceive() event procedure to evaluate the state of the
handshake lines.

Function character '^' (F12) - bitwise comparisons

The Function Character ' '̂ can be added by pressing F12 in the Edit Receive Sequence
dialog. After the ‘ ’̂ character, two additional character values specify which bits to
check (mask) and which values to expect for these bits (value).

Receive Sequence
(HEX Mode)

Description

 ̂| mask | value Is a match for the next character received, when the following is
true:
((nextCharacterReceived XOR value) AND mask) = 0
In other words - the ‘ ’̂ character picks only the bits marked in
mask and compares them with the corresponding bits in value.
See below for examples.

 ̂| 0F | 05 Is a match, when for the next character the following is true:

42

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Bit 0 = 1
Bit 1 = 0
Bit 2 = 1
Bit 3 = 0
Bit 4-7 = (don’t care)

! | ̂| 04 | 04 This Receive Sequence triggers when the new handshake
signal state says
DCD = High. All other handshake signals can have any state.

NOTE: This Receive Sequence will trigger for any change of
any handshake signal, in case DCD still remains High.

TIP: This extension is also demonstrated in the Docklight Scripting example project
Docklight_TapPro_Demo.ptp (see the folder Extras\TapPro in your \Samples
 directory)

6.6 Creating and Detecting Inter-Character Delays

Some applications, especially microcontroller applications without a dedicated serial
data buffer, require an extra delay between individual characters to avoid buffer
overflows and allow the microcontroller to execute other code.

In Docklight you can implement inter-character delays by inserting one or several
Function Characters '&' (F9 key) in your Send Sequence data, followed by a
character specifying the desired delay time from 0.01 seconds to 2.55 seconds.

You can also use the '&' delay character inside a Receive Sequence to specify a
minimum silent time where no further characters should be received. This is useful for
detecting pauses in the data stream that indicate the beginning/end of a telegram,
especially for protocols where there is no dedicated start or end character.

Preconditions

· Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

· The Docklight project already contains one or several Send Sequences, but an
additional delay at certain character positions is required.

Sending Data With Inter-Character Delays

As an example, we use a microcontroller application which understands a "get"
command. In ASCII Mode, the Send Sequence would be:
g | e | t | r ("r" is a terminating <CR> Carriage Return character)

The following steps describe how to add an additional delay of 20 milliseconds between
each character and avoid buffer overflows on the microcontroller side.

A) Modifying the existing Send Sequence

1. Open the Edit Send Sequence dialog.
2. Switch Edit Mode to Decimal. Our "get" example looks like this in decimal mode:

103 | 101 | 116 | 013
3. Insert a delay function character between the first and the second character: Press

F9, or open the context menu using the right mouse button, and choose
Function character '&' (delay... . The example sequence now reads:
103 | & | 101 | 116 | 013

43

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

4. Add the delay time: In this example a decimal value of 002 (20 milliseconds) after
the "&" function character is added. The sequence is now:
103 | & | 002 | 101 | 116 | 013

5. Insert a delay between all other inter-character positions: the delay character and
delay time can be copied using Ctrl+C, and pasted in the desired positions using
Ctrl+V. Our example sequence finally reads:
103 | & | 002 | 101 | & | 002 | 116 | & | 002 | 013
Or back in ASCII Mode:
g | & | o | e | & | o | t | & | o | r

6. Click OK to confirm the changes

NOTE: To distinguish a '&' delay character from a regular ampersand ASCII character
(decimal code 38), the delay function character is shown on a different background
color by the sequence editor.

NOTE: The character after a delay function character is interpreted as the delay time
and is not sent to the serial device.

B) Sending the command to the microcontroller application

1. Send the modified Send Sequences using the Send button.

Docklight will send out the same data as before, but leave additional timing gaps as
specified by the delay characters. The communication display will show the same
communication data as without the delays.

NOTE: Docklight's accuracy for delay timing is limited because it has no control over
the UART's internal TX FIFO buffer. The specified delay times for the '&' delay function
character are minimum values. Measured delay values are significantly higher, because
Docklight always waits a minimum time to ensure the UART TX FIFO buffer is empty.
Also, the display format and the additional performance settings affects the timing. If
you have more specific requirements on Send Sequence timing and need to control the
Docklight "wait time" as well as your UART FIFO settings, please contact our e-mail
support.

TIP: If you require the same delay between each character of the transmitted data,
have a look at the SendByteTiming.pts sample script (see the folder
Extras\SendByteTiming in your Script Samples directory). This script will
automatically slice your Send Sequences into individual characters and send the data
"byte-by-byte", using a predefined inter-character delay.

Pause detection using a Receive Sequence

Docklight already offers the Pause detection... display option to insert additional time
stamps or line breaks after communication pauses.

If you require not only visual formatting, but need to define actions after a minimum
pause, or simply make sure the Receive Sequence detection algorithm starts anew after
a pause, you can add the delay function character to your Receive Sequence
definition.

In most applications the best place for the delay function character will be at the
beginning of the Receive Sequence, before the actual receive data characters. You can
also create a Receive Sequence that contains a delay/pause definition only, and no
actual serial data. This can be very useful for implementing timing constraints, e.g.
resetting the telegram detection after a pause occurred.

44

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

TIP: See the LineParser.ptp / LineParser.pts project and script file (folder
Extras\LineParser in your Script Samples directory) for a sample application.

6.7 Setting and Detecting a "Break" State

Some serial application protocols (e.g. LIN) make use of the so-called Break state for
synchronization purposes. Docklight Scripting supports sending a "break" within a
Send Sequence and detecting a "break" state using a Receive Sequence definition.
"break" signals are added to your sequence definition by inserting a Function
Character '%' (F10 key). A Docklight "break" signal has a minimum length of 15 *
<nominal bit length>.

Preconditions

· Docklight is ready to run a test as described in testing a serial device or a protocol
implementation.

· The Docklight project already contains one or several Send Sequences, but signalling
or detecting a "break" state is also required.

Sending a "Break" state

We assume there is already a "Test" Send Sequence which looks like this in ASCII
mode:
T | e | s | t

1. Open the Edit Send Sequence dialog.
2. Insert a "Break" function character at the beginning: Press F10, or open the

context menu using the right mouse button, and choose Function character '%'
(break signal) . The example sequence now reads:
% | T | e | s | t

3. Click OK to confirm the changes

4. Send the test sequence using the Send button.

The TX line will go to Space (logical 0) for at least 15 bit durations, then the "Test"
ASCII sequence will be transmitted. The "break" character does not appear in the
communication window display.

Detecting a "Break" state

Received "break" signals are not displayed in the communication window, because they
are not part of the actual data sequence. Nonetheless, it is possible to define a Receive
Sequence including a "break" function character.

1. Create a new Receive Sequence. Enter a Name for the sequence.
2. Add a Function character '%' (break signal) for the Sequence data.
3. Enter a Receive Sequence Action, for example printing the comment "BREAK

detected"
4. Click OK to confirm the changes
5. Start communications.

Docklight will now add BREAK detected to the communication window display each
time a break signal is detected.

NOTE: After detecting a break signal, an additional <NUL> character (decimal code 0)
may appear in the received data stream. This behavior cannot be controlled by

45

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Docklight, it depends on how the serial UART of your PC's COM port interpretes the
break state.

NOTE: If you need to implement a Receive Sequence that checks for a break signal
followed by additional data, keep in mind that Docklight cannot tell the exact position of
the break signal within the data stream. The break signal will sometimes show up earlier
in the data stream, but never later than the actual position. To define a Receive
Sequence that safely triggers on break + specific data, you can use the following
workaround: Insert some '#' (zero or one character) wildcards between the break
character and the additional data. The resulting Receive Sequence could look like this:
% | # | # | # | # | # | # | # | # | T | e | s | t

6.8 Testing a TCP Server Device (Scripting)

Preconditions

· The IP address of the device is known, and the device is accessible via the network
from the computer running Docklight Scripting - i.e. a 'ping' to the device's IP address
works.

· You know which TCP port you can connect to your device on.
· You know the protocol specification for the device, e.g. Modbus TCP, and the set of

commands the device understands.

Testing TCP Server protocol functions

A) Setting the Communication Options

1. Choose the menu Tools > Project Settings...
2. Choose communication mode Send/Receive
3. At Send/Receive on comm. channel, enter the IP address and TCP port number

for connecting to the device, e.g. 192.0.0.1:10001.
4. Confirm the settings and close the dialog by clicking the OK button.

TIP: If you want to connect to a server that runs on the same computer as Docklight,
you can use the keyword LOCALHOST instead of the actual IP address of your
computer (e.g. LOCALHOST:10001 for connecting to a server on port 10001 on the
same computer). Using the loopback address 127.0.0.1 will have the same effect.

B) Defining the Send Sequences and Receive Sequences used:
Define all of the commands and responses required for your test, as described in
Testing a Serial Device or a Protocol Implementation.

C) Running the test

Establish a connection by choosing Run > Start Communication.

46

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Docklight Scripting now tries to connect to the TCP server device. After the connection

is established, you can send one of your predefined Send Sequences using the
Send button. Until the TCP server accepts the connection request, you will not see any
TX (transmission) data appearing in the Communication Window.

NOTE: If the server closes the TCP session before you choose Run > Stop
Communication in Docklight, you will receive the error message "TCP/IP connection
closed by the remote computer", and the communication will be stopped.

NOTE: If you receive the error "IP Address / TCP port in use" when starting
communications, check if another server or even another Docklight Scripting instance
is blocking the port. Also try closing and restarting Docklight Scripting - sometimes the
TCP driver layer used by Docklight Scripting does not release a TCP port until the
application using it is closed.

NOTE: Even if there is no other server or client blocking a port, it may take up to 4
minutes until a port is actually released and available again. This is a restriction in the
TCP driver layer used in Docklight Scripting, and unfortunately Docklight Scripting
cannot control this.

6.9 Monitoring a Client/Server TCP Connection (Scripting)

Docklight Scripting allows you to monitor and debug a TCP-based application with the
same ease as when using RS232 ports and cables. Instead of using a Docklight
Monitoring Cable between the two devices being tested, you can run Docklight Scripting
within the network and simply have the client (Device 1) connect to Docklight Scripting
instead of the network-enabled product (Device 2).

47

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

Preconditions

· Device 1, Device 2 and the PC with Docklight are connected in a common network
(LAN).

· All IP addresses and the TCP port number are known.
· Device 1 is currently configured to connect to Device 2, and communications

between the two devices is working.

Route and debug TCP traffic

A) Route the traffic through Docklight Scripting
In Device 1, change the communication parameters: Device 1 must connect to the
Docklight PC (in our example IP 192.0.0.2).

B) Setup Docklight Scripting for operating as a bridge for the communication between
Device 1 and Device 2

1. Choose the menu Tools > Project Settings...
2. Choose communication mode Monitoring (Receive only)
3. For Receive Channel 1, type the keyword SERVER and the TCP port to listen on

(e.g. SERVER:502).
4. For Receive Channel 2, type the IP address and TCP Port number for

connecting to Device 2 (e.g. 192.0.0.1:502).
5. Confirm the settings and close the dialog by clicking the OK button.

C) Running the test

Start Docklight Scripting using Run > Start Communication. Let Device 1 connect
and perform a test run. Docklight Scripting will act as a bridge between the devices and
show you all the TCP data transferred between the devices in the communication
window.

NOTE: Docklight Scripting does not allow multiple connections on a SERVER port. Only
one connection at a time may be used. This is similar to the default operation of many
Serial Device Servers.

48

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Working with Docklight (Advanced)

TIP: An example that can be tried on any computer with a web browser and Internet
access is the TCP_Monitoring_HTTP.ptp project which can be found in the \Network
folder of the \ScriptSamples directory.

Examples and Tutorials

50

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

7 Examples and Tutorials

This chapter describes two sample projects that demonstrate some of Docklight's basic
functions. The corresponding Docklight project files (.ptp files) can be found in the
\Samples folder within the Docklight installation directory (e.g. C:\Program
Files\FuH\Docklight V2.3\Samples).

TIP: The \Samples folder can also be reached via the Docklight Welcome screen
(menu Help > Welcome Screen and Examples...).

NOTE: If you are logged on with a restricted user account, you will not have permission
to make any changes in the program files directory. In this case, saving a project file or
any other data into the \Samples folder will produce an error.

NOTE: For additional sample projects and Application Notes, see also our online
resources at https://docklight.de/examples/.

7.1 Testing a Modem - Sample Project: ModemDiagnostics.ptp

The Docklight project ModemDiagnostics.ptp can be used to perform a modem check.
A set of modem diagnostic commands are defined in the Send Sequences list.

This is a simple example for Testing a serial device or a protocol implementation. The
sample project uses the communication settings listed below. This should work for most
standard modems.

Communication Mode Send/Receive

COM Port Settings 9600 Baud, No parity, 8 Data Bits, 1 Stop Bit

Getting started

· Use the Windows Device Manager to find out which COM Port is a modem device.
This demo project may be used with any AT-compatible modem available on your PC,
e.g. a built-in notebook modem, or a GSM or Bluetooth modem driver than can be
accessed through a virtual COM port.

TIP: For a simple test without specialized hardware, add your mobile phone as
Bluetooth Device on your Windows PC. Then find your phone in the Windows
Devices and Printers list. Right-click on it, choose Properties and go to the
Hardware tab. In the Device Functions list it should mention the modem related
COM Ports.

· Go to the Project Settings... dialog and make sure you have selected the same
COM Port for Send/Receive on comm. channel.

· Press the Start Communication button in the toolbar.

· Try sending any of the predefined modem commands by pressing the Send
button

You should now receive a response from your modem, e.g. "OK" if your command was
accepted, a model identification number, etc. The response will vary with the modem
model.

After sending several sequences, the Docklight communication window could look like
this:

07.02.2013 18:17:54.083 [TX] - ATQ0V1E0<CR><LF>

https://docklight.de/examples/

51

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

07.02.2013 18:17:54.107 [RX] - ATQ0V1E0<CR><LF>
<CR><LF>
OK<CR><LF>

07.02.2013 18:18:00.511 [TX] - ATI2<CR><LF>

07.02.2013 18:18:00.747 [RX] - <CR><LF>
V 11.10<CR><LF>
13-05-11<CR><LF>
RM-721<CR><LF>
(c) Nokia <CR><LF>
<CR><LF>
OK<CR><LF>

07.02.2013 18:18:01.393 [TX] - ATI3<CR><LF>

07.02.2013 18:18:01.421 [RX] - <CR><LF>
Nokia C2-01<CR><LF>
<CR><LF>
OK<CR><LF>
...

Further Information

The Send Sequences list includes the following standard AT modem commands:

Send Sequence Description / Modem Response

ATQ0V1E0 Initializes the query.

AT+GMM Model identification (ITU V.250 recommendation is not
supported by all modems).

AT+FCLASS=? Fax classes supported by the modem, if any.

AT#CLS=? Shows whether the modem supports the Rockwell voice
command set.

ATI<n> Displays manufacturer's information for <n> = 1 through 7.
This provides information such as the port speed, the result
of a checksum test, and the model information. Check the
manufacturer's documentation for the expected results.

The \Samples folder also contains a log file ModemDiagnostics_Logfile_asc.txt. It
shows a test run where the above Send Sequences were sent to a real modem.

7.2 Reacting to a Receive Sequence - Sample Project:
PingPong.ptp

The Docklight project PingPong.ptp is a simple example for how to define and use
Receive Sequences.

Getting started

· Go to the Project Settings... dialog and choose a COM port.
· Apply a simple loopback to this COM port: Connect Pin 2 (RX) with Pin 3 (TX). See

RS232 SUB D9 Pinout.

· Now press the Send button for either of the two Send Sequences.
Communication is started and the Send Sequence is transmitted. It will of course be
instantly received on the COM port's RX line.

52

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

Docklight will detect the incoming data as being one of the defined Receive Sequences.
It will then perform the action predefined for this event, which is sending out another
sequence. As a result, Docklight will send out alternating Send Sequences - "Ping" and
"Pong".

· Use the Stop communication button to end the demo.

The Docklight communication display should look similar to this:

3/8/2009 16:25:44.201 [TX] - ----o Ping
3/8/2009 16:25:44.216 [RX] - ----o Ping "Ping" received
3/8/2009 16:25:44.218 [TX] - o---- Pong
3/8/2009 16:25:44.233 [RX] - o---- Pong "Pong" received
3/8/2009 16:25:44.236 [TX] - ----o Ping
3/8/2009 16:25:44.251 [RX] - ----o Ping "Ping" received
3/8/2009 16:25:44.254 [TX] - o---- Pong
3/8/2009 16:25:44.268 [RX] - o---- Pong "Pong" received
3/8/2009 16:25:44.271 [TX] - ----o Ping
3/8/2009 16:25:44.286 [RX] - ----o Ping "Ping" received
3/8/2009 16:25:44.289 [TX] - o---- Pong
3/8/2009 16:25:44.303 [RX] - o---- Pong "Pong" received
3/8/2009 16:25:44.307 [TX] - ----o Ping
3/8/2009 16:25:44.322 [RX] - ----o Ping "Ping" received
3/8/2009 16:25:44.324 [TX] - o---- Pong
...

See also the corresponding log files in the \Samples folder
(PingPong_Logfile_asc.htm and PingPong_Logfile_hex.htm).

Further Information

This demo project can also be run in three alternative configurations:

1. Run two Docklight applications on the same PC using different COM ports. The two
COM ports are connected using a simple null modem cable.

2. Instead of two RS232 COM ports and a null modem cable you can use a virtual null
modem.

3. Use two PCs and run Docklight on each PC. Connect the two PCs using a simple
null modem cable.

TIP: For Docklight Scripting there is also a related example project that uses a UDP
loopback connection, and does not require any serial data ports. See the
PingPong_UDP_Loopback.ptp project in the \Network folder of the \ScriptSamples
directory.

7.3 Modbus RTU With CRC checksum - Sample Project:
ModbusRtuCrc.ptp

The Docklight project file ModbusRtuCrc.ptp demonstrates how to automatically
calculate the CRC value required to send a valid Modbus RTU frame.

53

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

The project file uses the communication settings listed below, according to the Modbus
implementation class "Basic".

Communication Mode Send/Receive

Send/Receive on comm. channel COM1

COM Port Settings 19200 Baud, Even parity, 8 Data Bits, 1 Stop Bit

Getting started

· Open the project file ModbusRtuCrc.ptp (menu Open Project ...). The file is
located in the \Samples folder.

· Connect the PC's COM port to your Modbus network. Open the Project
Settings... dialog and make sure you have selected the correct COM Port for
Send/Receive on comm. channel.

· Click the Send button in the Read Input Register Slave=?.. line of the Send
Sequence list

· Enter a slave number in the Send Sequence Parameter dialog, e.g. "01" for
addressing slave no. 1.

After sending "Read Input Register" commands to slaves 1 - 4, the communication
window could look like this:

23.09.2019 07:04:56.170 [TX] - 01 04 00 03 00 01 C1 CA
23.09.2019 07:04:56.282 [RX] - 01 04 02 FF FF B8 80
Detected Modbus Frame = 01 04 02 FF FF B8 80
SlaveID=01
FunctionCode=04
Addr/Data=02 FF FF
CRC=B8 80

 Input Register Answer: Slave=001 ValueHex=FFFF

23.09.2019 07:05:21.761 [TX] - 02 04 00 03 00 01 C1 F9
23.09.2019 07:05:21.873 [RX] - 02 04 02 7F 58 DC FA
Detected Modbus Frame = 02 04 02 7F 58 DC FA
SlaveID=02
FunctionCode=04
Addr/Data=02 7F 58
CRC=DC FA

 Input Register Answer: Slave=002 ValueHex=7F58

23.09.2019 07:05:35.713 [TX] - 03 04 00 03 00 01 C0 28
23.09.2019 07:05:35.824 [RX] - 03 04 02 01 0A 41 67
Detected Modbus Frame = 03 04 02 01 0A 41 67
SlaveID=03
FunctionCode=04
Addr/Data=02 01 0A
CRC=41 67

 Input Register Answer: Slave=003 ValueHex=010A

23.09.2019 07:05:51.677 [TX] - 04 04 00 03 00 01 C1 9F
23.09.2019 07:05:51.789 [RX] - 04 04 02 40 00 44 F0
Detected Modbus Frame = 04 04 02 40 00 44 F0
SlaveID=04
FunctionCode=04

54

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials

Addr/Data=02 40 00
CRC=44 F0

 Input Register Answer: Slave=004 ValueHex=4000

The [RX] channel shows the responses from the Modbus slaves:
slave 1 responded value "-1",
slave 2 responded "32600",
slave 3 responded "266" and
slave 4 responded "16384".

NOTE: If you are using the Docklight Modbus example on a RS485 bus and do not see
a device answer, check if your RS485 hardware interface automatically switches
between transmit and receive mode, or you need to use the RS485 Transceiver Control
option.

Further Information

· The CRC calculation is made according to the specifications for Modbus serial line
transmission (RTU mode). Docklight's checksum function supports a "CRC-MODBUS"
model for this purpose. See Calculating and Validating Checksums for more general
information on implementing checksum calculations.

· If you do not have any Modbus slave devices available, you can use a software
simulator. See the www.plcsimulator.org/ as originally mentioned on
www.modbus.org, "Modbus Technical Resources", "Modbus Serial RTU Simulator".
This simulator was used to produce the sample data shown above.

http://www.plcsimulator.org/
http://www.modbus.org

Examples and Tutorials (Scripting)

56

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials (Scripting)

8 Examples and Tutorials (Scripting)

This chapter describes sample scripts that demonstrate some of the possibilities when
using Docklight Scripting. The corresponding Docklight script files (.pts files) and other
related files can be found in the folder \ScriptSamples within the Docklight Scripting
installation directory (e.g. C:\Program Files\FuH\Docklight Scripting
V2.3\ScriptSamples).

TIP: The \ScriptSamples folder can also be reached via the Docklight Scripting
Welcome screen (menu Help > Welcome Screen and Examples...).

NOTE: If you are working with a user account which has restricted system access, you
might not have permission to save into the program files directory. In this case, saving a
project file or any other data into the \ScriptSamples folder will produce an error.

NOTE: For additional sample scripts, projects and Application Notes, see our online
resources at https://docklight.de/examples/.

8.1 Automated Modem Testing - Sample Script:
ModemScript.pts

The Docklight script ModemScript.pts and the accompanying project file
ModemATCommands.ptp demonstrate how to use a Docklight script for an automated
test or configuration task with user interaction.

The project file uses the communication settings listed below. This should work for most
standard modems.

Communication Mode Send/Receive

Send/Receive on comm. channel COM3

COM Port Settings 9600 Baud, No parity, 8 Data Bits, 1 Stop Bit

Getting started

· Connect the modem to an available COM port, e.g. COM1, and switch it on. The demo
may also run on a notebook with a built-in modem. In many cases you will find your
notebook's built-in modem on COM3, so you can try and run the sample script without
modifying the project settings.

· Go to the Project Settings... dialog and make sure you have selected the same
COM Port for Send/Receive on comm. channel.

· Press the Run Script button in the toolbar.
· Type in the AT command range to be tested, or simply accept the default value by

pressing Enter.

The script now establishes a connection with the modem and runs through the AT
command set. After successfully completing the test run, the Docklight communication
window could look like this:

 Waiting for modem ...

3/8/2009 16:23:08.870 [TX] - ATQ0V1E0<CR><LF>

3/8/2009 16:23:08.873 [RX] - ATQ0V1E0<CR>
<CR><LF>
OK<CR><LF>

https://docklight.de/examples/

57

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials (Scripting)

 Checking AT command set...

3/8/2009 16:23:08.888 [TX] - ATI0<CR><LF>

3/8/2009 16:23:08.891 [RX] - <CR><LF>
Agere SoftModem Version 2.1.46<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:09.091 [TX] - ATI1<CR><LF>

3/8/2009 16:23:09.101 [RX] - <CR><LF>
OK<CR><LF>

3/8/2009 16:23:09.293 [TX] - ATI2<CR><LF>

3/8/2009 16:23:09.294 [RX] - <CR><LF>
OK<CR><LF>

3/8/2009 16:23:09.496 [TX] - ATI3<CR><LF>

3/8/2009 16:23:09.498 [RX] - <CR><LF>
Agere SoftModem Version 2.1.46<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:09.700 [TX] - ATI4<CR><LF>

3/8/2009 16:23:09.702 [RX] - <CR><LF>
Built on 07/22/2004 14:50:10<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:09.901 [TX] - ATI5<CR><LF>

3/8/2009 16:23:09.912 [RX] - <CR><LF>
2.1.46, AMR Intel MB, AC97 ID:SIL REV:0x27, 06<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:10.104 [TX] - ATI6<CR><LF>

3/8/2009 16:23:10.110 [RX] - <CR><LF>
OK<CR><LF>

3/8/2009 16:23:10.308 [TX] - ATI7<CR><LF>

3/8/2009 16:23:10.315 [RX] - <CR><LF>
AMR Intel MB<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:10.510 [TX] - ATI8<CR><LF>

3/8/2009 16:23:10.513 [RX] - <CR><LF>
AC97 ID:SIL REV:0x27<CR><LF>
<CR><LF>

58

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials (Scripting)

OK<CR><LF>

3/8/2009 16:23:10.713 [TX] - ATI9<CR><LF>

3/8/2009 16:23:10.723 [RX] - <CR><LF>
Germany<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:10.916 [TX] - ATI10<CR><LF>

3/8/2009 16:23:10.921 [RX] - <CR><LF>
OK<CR><LF>

3/8/2009 16:23:11.119 [TX] - ATI11<CR><LF>

3/8/2009 16:23:11.120 [RX] - Description
 Status<CR><LF>
--------------- ------------<CR><LF>
Last Connection Unknown<CR><LF>
Initial Transmit Carrier Rate 0<CR><LF>
Initial Receive Carrier Rate 0<CR><LF>
Final Transmit Carrier Rate 9600<CR><LF>
Final Receive Carrier Rate 9600<CR><LF>
Protocol Negotiation Result NONE<CR><LF>
Data Compression Result NONE<CR><LF>
Estimated Signal/Noise Ratio (dB) 00<CR><LF>
Receive Signal Power Level (-dBm) 00<CR><LF>
Transmit Signal Power Level (-dBm) 10<CR><LF>
Round Trip Delay (msec) 1000<CR><LF>
Near Echo Level (-dBm) 00<CR><LF>
Far Echo Level (-dBm) 00<CR><LF>
Transmit Frame Count 0<CR><LF>
Transmit Frame Error Count 0<CR><LF>
Receive Frame Count 0<CR><LF>
Receive Frame Error Count 0<CR><LF>
Retrain by Local Modem 0<CR><LF>
Retrain by Remote Modem 0<CR><LF>
Rate Renegotiation by Local Modem 0<CR><LF>
Rate Renegotiation by Remote Modem 0<CR><LF>
Call Termination Cause 0<CR><LF>
Robbed-Bit Signaling 0<CR><LF>
Digital Loss (dB) 00<CR><LF>
Remote Server ID NA<CR><LF>
<CR><LF>
OK<CR><LF>

3/8/2009 16:23:11.441 [TX] - ATI12<CR><LF>

3/8/2009 16:23:11.443 [RX] - <CR><LF>
OK<CR><LF>

3/8/2009 16:23:11.643 [TX] - ATI13<CR><LF>

3/8/2009 16:23:11.654 [RX] - <CR><LF>
ERROR<CR><LF>

3/8/2009 16:23:11.846 [TX] - ATI14<CR><LF>

59

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials (Scripting)

3/8/2009 16:23:11.852 [RX] - <CR><LF>
ERROR<CR><LF>

 Results:
 Found 13 valid AT commands.
 2 AT command(s) did not work.

8.2 Startup From Command Line - Sample Script:
LogStartupScript.pts

The Docklight script LogStartupScript.pts, the related project file
LogStartupSettings.ptp, and the batch file LogStartup.bat demonstrate how to start
Docklight from the command line, create a log file according to predefined settings and
start communications automatically.

The project file uses the communication settings listed below.

Communication Mode Monitoring (receive only)

Receive channel 1 COM1

Receive channel 2 COM3

COM Port Settings 9600 Baud, No parity, 8 Data Bits, 1 Stop Bit

Getting started

· Start the batch file LogStartup.bat from a command line or go to the \ScriptSamples
directory and run LogStartup.bat by double-clicking the file.

Docklight Scripting is started, an ASCII log file C:\DocklightScripting_Logfile_asc.txt
is created and communication is started immediately.

Use Shift+F6 to stop the script's execution and close the communication ports and log
file.

NOTE: This sample requires a software license for the Docklight standard version, since
it makes use of the Docklight Logging function. A Docklight Scripting license is not
required when running the sample.

Further Information

The batch file, LogStartup.bat, contains the following line:

..\Docklight_Scripting.exe -r LogStartupScript.pts

This will start Docklight Scripting, open the script file LogStartupScript.pts and run it
immediately (-r option). The script LogStartupScript.pts contains the following
commands:

' LogStartupScript.pts
' Start up logging and communication
DL.OpenProject "LogStartupSettings"
' Create (or append to) a ASCII log file
DL.StartLogging "C:\DocklightScripting_Logfile", True, "A"
DL.StartCommunication
' Keep communication & logging alive until user stops
Do

60

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials (Scripting)

 DL.Pause 1 ' (the pause reduces CPU load while idle)
Loop

The communication settings used in LogStartupSettings.ptp are just an example. If
you require different settings, you need to open the project file, modify the project
settings and save the changes. It is recommended that all related files
(LogStartupScript.pts, LogStartupSettings.ptp and LogStartup.bat) be copied to a
different location before making any changes. You need to provide the complete actual
path to the Docklight_Scripting.exe application within the .bat file in this case.

8.3 Manipulating a RS232 Data Stream - Sample Script:
CharacterManipulation.pts

The Docklight script CharacterManipulation.pts demonstrates how to manipulate a
RS232 data stream using the DL_OnReceive() event procedure. All data received on the
RX line is sent out again on the TX line, but with some of the characters replaced.

Getting started

· Open the project file CharacterManipulationPrj.ptp (using the Open Project ...
menu) and the script file CharacterManipulation.pts (using the Open Script ...
menu). The files are located in the \ScriptSamples folder.

· Go to the Project Settings... dialog and choose a COM port.

· Press the Run Script button in the toolbar.
· Start a second instance of Docklight and open the project file

CharacterManipulationTest.ptp.
· Choose a different COM port for this second Docklight instance (or even use another

computer).
· Connect the two COM ports using a simple null modem cable. Or use a virtual null

modem instead.

· Use the Send button on the second instance of Docklight to send the test
sentence.

The communication display of the second instance of Docklight should look similar to
this:

2/21/2009 11:56:57.343 [TX] - This is a test for the character
manipulation sample script
2/21/2009 11:56:57.502 [RX] - Dhis is a desd for dhe characder
manibuladion samble scribd

Each "T" is replaced by a "D", and each "P" is replaced by a "B". (Visitors to the
Nuremberg area, where our company is located, might notice that dialect speakers here
do something similar...)

Further Information

· The sample uses the DL_OnReceive() event procedure to perform additional
operations each time a new character is received. See Evaluating Receive Sequence
Data for more details.

· The performance of a character-by-character processor in Docklight Scripting is
quite limited. You can easily overload it by sending a constant flow of data. Docklight
will display a comment in the communication window in this case, e.g.
DOCKLI GHT r epor t s: I nput buf f er over f l ow on COM1

· For performance reasons, all TX and RX data display is disabled in
CharacterManipulationPrj.ptp

61

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Examples and Tutorials (Scripting)

· If you are thinking of writing a manipulator for your own protocol, consider a packet-
based approach, where one Receive Sequence can detect a whole packet or
command from your protocol. This will allow higher data rates than the character-
based approach presented here.

8.4 TCP/IP Communications - Sample Projects
PingPong_TCP_Server/Client.ptp

The project files PingPong_TCP_Server.ptp and PingPong_TCP_Client.ptp in the
\ScriptSamples\Network folder demonstrate how to use Docklight Scripting as a TCP
server or TCP client and exchange data.

The samples show how a server and a client can be run on the same computer using
the LOCALHOST network name, which always refers to the computer Docklight is
running on.

Getting started

· Open the project PingPong_TCP_Server.ptp in Docklight Scripting

· Press the Start Communication button in the toolbar.
· If you are using a Personal Firewall on your PC, it will probably notify you that

Docklight Scripting wants to act as a server. Confirm and allow, if required.
· Start a second instance of Docklight Scripting and open the

PingPong_TCP_Client.ptp project

· In this 'client' instance , press the Send button for the "Ping" sequence.
· If you are using a Personal Firewall on your PC, allow Docklight Scripting to connect

to the Internet.

The 'client' Docklight now connects to the 'server' Docklight, and data is exchanged as if
the two Docklight instances were connected by a serial null-modem cable.

The communication window on the client side now displays the following messages:

3/9/2009 17:29:24.192 [TX] - ----o Ping
3/9/2009 17:29:24.218 [RX] - o---- Pong "Pong" received
3/9/2009 17:29:24.221 [TX] - ----o Ping
3/9/2009 17:29:24.249 [RX] - o---- Pong "Pong" received
3/9/2009 17:29:24.254 [TX] - ----o Ping
3/9/2009 17:29:24.281 [RX] - o---- Pong "Pong" received
3/9/2009 17:29:24.283 [TX] - ----o Ping
3/9/2009 17:29:24.312 [RX] - o---- Pong "Pong" received
...

On the server side, you will see something like this:

3/9/2009 17:29:24.203 [RX] - ----o Ping "Ping" received
3/9/2009 17:29:24.206 [TX] - o---- Pong
3/9/2009 17:29:24.235 [RX] - ----o Ping "Ping" received
3/9/2009 17:29:24.238 [TX] - o---- Pong
3/9/2009 17:29:24.266 [RX] - ----o Ping "Ping" received
3/9/2009 17:29:24.268 [TX] - o---- Pong
3/9/2009 17:29:24.298 [RX] - ----o Ping "Ping" received
3/9/2009 17:29:24.301 [TX] - o---- Pong
...

Reference

63

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

9 Reference

9.1 Menu and Toolbar (Scripting)

NOTE: Hotkeys are available for common menu and toolbar functions.

File Menu

 New Project
Close the current Docklight project and create a new one.

 Open Project ...
Close the current Docklight project and open another project.

Import Sequence List ...
Import all Send Sequences and Receive Sequences from a second Docklight project.

 Save Project / Save Project As ...
Save the current Docklight project.

Print Project ...
Print the project data, i.e. the list of defined Send Sequences and Receive Sequences.
The sequences are printed in the same representation (ASCII, HEX, Decimal or Binary)
that is used in the Docklight main window. The representation may be chosen using the
Options dialog window.

 Print Communication ...
Print the contents of the communication window. The communication data is printed in
the same representation that is currently visible in the communication window.

Exit
Quit Docklight.

Edit Menu

Edit Send Sequence List ...
Edit the Send Sequences list, i.e. add new sequences or delete existing ones.

Edit Receive Sequence List ...
Edit the Receive Sequences list, i.e. add new sequences or delete existing ones.

Swap Send and Receive Sequence Lists
Convert all Send Sequences into Receive Sequences and vice versa.

 Find Sequence in Communication Window...
Find a specific sequence within the data displayed in the communication window. See
the Find Sequence function.

 Clear Communication Window
Delete the contents of the communications window. This applies to all four
representations (ASCII, HEX, Decimal, Binary) of the communication window.

Run Menu

 Start communication
Open the communication ports and enable serial data transfer.

64

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

 Stop communication
Stop serial data transfer and close the communication ports.

Tools Menu

 Start Communication Logging ...
Create new log file(s) and start logging the incoming/outgoing serial data. See logging
and analyzing a test.

 Stop Communication Logging
Stop logging and close the currently open log file(s).

 Start Snapshot Mode
Wait for a trigger sequence and take a snapshot. See Catching a specific sequence...

 Stop Snapshot Mode
Abort a snapshot and reenable the communication window display.

 Keyboard Console On
Enable the keyboard console to send keyboard input directly.

 Keyboard Console Off
Disable the keyboard console.

Minimize/Restore Documentation and Script
Minimize the Documentation and Script area, or bring it back to regular size.

Minimize/Restore Sequence Lists
Minimize the Send/Receive Sequence lists, or bring them back to regular size.

 Project Settings...
Select the current project settings (COM ports, baud rate, ...).

 Options...
Select general program options (e.g. display mode, date / time stamp).

Expert Options...
Select expert program options intended for advanced users and specific applications
(e.g. high monitoring accuracy).

Scripting Menu

 Run / Continue Script
Execute the code in the script editor.

 Stop Script
Stop a running script.

 Break Script
Interrupts a running script.

New Script
Close the current Docklight script and create a new one.

Open Script ...
Close the current Docklight script and open another script.

65

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Save Script / Save Script As ...
Save the current Docklight script.

Customize / External Editor...
Use an external editor instead of Docklight's built-in editor.

9.2 Dialog: Edit Send Sequence

This dialog is used to define new Send Sequences and edit existing ones (See also
Editing and Managing Sequences).

Index
The index of the sequence displayed below. The first sequence has index 0 (zero).

1 - Name
Unique name for this sequence (e.g. "Set modem speaker volume"). This name is for
referencing the sequence. It is not the data that will be sent out through the serial port.
See "2 - Sequence" below.

2 - Sequence
The character sequence that will be transmitted through the serial port.

TIP: For transmitting larger blocks of data that exceed the maximum sequence size, use
the DL.UploadFile script command.

TIP: Special Function Characters are available for creating inter-character delays, set
handshake signals and parity bits, or setting a break state.

3 - Additional Settings
· Repeat - Check the "Send periodically..." option to define a sequence that is sent

periodically. A time interval between 0.01 seconds and 9999 seconds can be
specified.

NOTE: The Windows reference time used for this purpose has only limited precision.
Time intervals < 0.03 seconds will usually not be accurate.

· Checksum - Perform automatic calculation of any type of checksum, including any
type of CRC standard such as Modbus, CCITT, CRC32.

TIP: See Calculating and Validating Checksums for a general overview, and Checksum
Specification for the text format used to define a checksum.

Wildcards
Wildcards can be used to introduce parameters into a Send Sequence that you wish to
insert manually each time the sequence is sent. See section Sending commands with
parameters for details and examples.

Control Character Shortcuts
Using keyboard shortcuts is a great help when editing a sequence that contains both
printing characters (letters A-z, digits 0-9, ...) and non-printing control characters
(ASCII code 0 to 31). Predefined shortcuts are:
Ctrl+Enter for carriage return / <CR> / decimal code 13
Ctrl+Shift+Enter for line feed / <LF> / decimal code 10

Use Options... --> Control Character Shortcuts to define other shortcuts you find
useful.

Sequence Documentation

66

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Add some documentation about this sequence here. This documentation is also shown
in the main window when selecting the sequence in the Send Sequences list.

9.3 Dialog: Edit Receive Sequence

This dialog is used to define new Receive Sequences and edit existing ones (See also
Editing and Managing Sequences).

Index
The index of the sequence displayed below. The first sequence has index 0 (zero).

1 - Name
Unique name for this sequence (e.g. "Ping received"). This name is for referencing the
sequence. It is not the sequence received through the serial port. See "2 - Sequence"
below.

2 - Sequence
The character sequence which should be detected by Docklight within the incoming
serial data.

TIP: Special Function Characters are available for detecting inter-character delays,
evaluating handshake signal changes or detecting a break state.

3 - Action
The action(s) performed when Docklight detects the sequence defined above.

You may choose from the following actions:
· Answer - After receiving the sequence, transmit one of the Send Sequences. Only

Send Sequences that do not contain wildcards can be used as an automatic answer.
· Comment - After receiving the sequence, insert a user-defined comment into the

communication window (and log file, if available). Various comment macros are
available for creating dynamic comment texts.

· Trigger - Trigger a snapshot when the sequence is detected. This is an advanced
feature described in the section Catching a specific sequence...

· Stop - Stop communications and end the test run.
· Checksum - Perform automatic validation of a checksum, including any type of CRC

standard such as Modbus, CCITT, CRC32.
Set the Checksum Specification, as well as what should be done with the result:
Detect Checksum OK - the received data must have the same checksum than the
calculated value from Docklight.
Checksum Wrong - the opposite. A mismatching checksum constitutes a "sequence
match".
Both OK/Wrong - the sequence is always detected. The checksum area will contain
all ASCII "1" (HEX 31) for a matching checksum, or ASCII "0" (HEX 30) for a wrong
checksum.

TIP: See Calculating and Validating Checksums for a general overview, and Checksum
Specification for the text format used to define a checksum.

Wildcards
Wildcards can be used to test for sequences that have a variable part with changing
values (e.g. measurement or status values). See section Checking for sequences with
random characters for details and examples.

Control Character Shortcuts
Using keyboard shortcuts is a great help when editing a sequence that contains both
printing characters (letters A-z, digits 0-9, ...) and non-printing control characters
(ASCII code 0 to 31). Predefined shortcuts are:

67

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Ctrl+Enter for carriage return / <CR> / decimal code 13
Ctrl+Shift+Enter for line feed / <LF> / decimal code 10

Use Options... --> Control Character Shortcuts to define other shortcuts you find
useful.

Sequence Documentation
Add some documentation about this sequence here. This documentation is also shown
in the main window when selecting the sequence in the Send Sequences list.

9.4 Dialog: Start Logging / Create Log File(s)

Menu Tools > Start Communication Logging ...

Log file format
The available log formats are plain text (.txt), HTML for web browsers (.htm), or RTF
Rich Text Format for Microsoft Word or Wordpad (.rtf).

· Plain text file (.txt) is a good choice if you expect your log files to become very
large.

TIP: The Windows built-in Notepad editor can be very slow in opening and editing
larger files. We recommend the popular Open Source editor Notepad++ as available at
http://notepad-plus.sourceforge.net - it is a much faster and more powerful alternative.

NOTE: there is no size limit for Docklight log files besides the limits on your Windows
PC. We have successfully tested Docklight in long-term monitoring / high volume
applications and created log files with several GB size without any stability issues.

· HTML files (.htm) are more comfortable to analyze, because they include all the
visual formatting of the Docklight communication windows (colors, bold characters,
italic characters). However, the disk size for such a file will be larger than for a plain
text format, and large HTML files will slow down common web browsers.

TIP: If you have specific requirements on the output format, you can customize the
HTML output.

· RTF Rich Text Format (.rtf) is a good choice for both small and large log files with
formatted text - both Microsoft Word and Wordpad can navigate through larger files
fast and without appearing unresponsive.

NOTE: Due to the specifics of the RTF document format, Docklight cannot efficiently
append new data to an existing log file, but needs to create a temporary copy of the
existing log first, which can cause additional delays. It is also not supported to append
new logging data with different colors & font settings than at the start of the file.

Log file directory and base name
Choose the directory and base file name for the log file(s) here. The actual file path
used for the individual log file representations are displayed in the text boxes within the
"Log file representation" frame.

Overwrite / append mode
Choose "append new data" if you do not want Docklight to overwrite existing log file(s).
Docklight will then insert a "start logging / stop logging" message when opening / closing
the log files. This is so that when in 'append mode' it is still possible to see when an
individual log file session started or ended.

Representation

http://notepad-plus.sourceforge.net

68

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

A separate log file may be created for each data representation (ASCII, HEX, ...).
Choose at least one representation. The log files will have a ".txt" or ".htm" file extension.
Docklight additionally adds the representation type to the file name to distinguish the
different log files. E.g. if the user specifies "Test1" as the base log file name, the plain
text ASCII log file will be named "Test1_asc.txt", whereas the plain text HEX log file will
be named "Test1_hex.txt".

Disable communication window while logging
If you are monitoring a high-speed communication link or if you are running Docklight
on a slow computer, Docklight may not be able to process all the transmitted data or
may even freeze (no response to any user input).
Using this option to disable the communication window output while logging the data to a
file. Docklight will run much faster, since the continuous display formatting and update
requires considerable CPU time.

NOTE: For more information on high-speed applications, see also the section How to
Increase the Processing Speed...

9.5 Dialog: Customize HTML Output

(via menu Tools > Start Communication Logging ... , then choose HTML file for
web browsers (.htm) and click Customize HTML output)

This dialog allows you to change the appearance of the HTML log files, by modifying the
HTML template code that Docklight uses when generating the HTML log file data.

You need some basic understanding of HTML documents and CSS style attributes. We
recommend www.htmldog.com (English) or www.selfhtml.org (German) for a quick
overview on these topics.

HTML Header Template
The HTML document header. Here you can change the font applied to the log file data,
using the following CSS style attributes:

CSS Style Attribute Description and Example

font-family Defines one or several fonts (or: font categories) that the
HTML browser should use to print a text. If the browser does
not support the first font, it will try the second one, a.s.o. The
last font usually defines a generic font category that every
browser supports. Examples:
font-family:'Courier New', Courier, monospace
font-family:'Times New Roman', Times, serif
font-family:arial, helvetica, sans-serif

font-size Specifies the font size. Both, absolute and relative sizes are
possible. Examples for absolute font sizes:
font-size:12pt
font-size:xx-small
font-size:x-small
font-size:small
font-size:medium
font-size:large
font-size:x-large
font-size:xx-large
Examples for relative font sizes (relative to the parent HTML
element)
font-size:smaller
font-size:larger

https://www.htmldog.com
https://www.selfhtml.org

69

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

font-size:90%

NOTE: Use the semicolon (";") as a separator between two different CSS style
attributes, e.g.
font-family:sans-serif; font-size:small

NOTE: Docklight will insert additional <u> (underline), <i> (italic) and (bold) HTML
tags, if such formatting options are activated in the Display Settings. You do not have to
use the font-style or font-weight attribute to create these effects.

HTML Footer Template
Adds additional footer text and closes the HTML document.

Data Element Template
For every new piece of log file information (channel 1 data, channel 2 data, or a
comment text), a new tag with different text color is added to the HTML log
file.

The template code for the header, footer and data parts contains Docklight-specific
wildcards which must not be deleted:

Wildcard Description

%BACKCOLOR% The background color, as selected in the Display Settings

%HEADERMSG% Header text at the start of the log file

%FOOTERMSG% Footer text at the end of the log file

%DATA% a chunk of the log file data: channel 1 data, channel 2 data, or
a comment text

%TEXTCOLOR% The text color to apply for %DATA%, as selected in the
Display Settings

When generating a log file, Docklight replaces the wildcards with the current display
settings and the actual communication data.

9.6 Dialog: Find Sequence

Menu Edit > Find Sequence in Communication Window...

The Find Sequence function searches the contents of the communication window. The
search is performed in the communication window tab that is currently selected (ASCII,
HEX, Decimal or Binary). You may, however, define your search string in any other
representation.

Searching the communication windows is only possible if the communication is stopped.

You can search for anything that is already defined as a Send Sequence or a Receive
Sequence, or you may define a custom search sequence.

NOTE: If you are looking for a sequence within the ASCII communication window,
please remember the following limitations:
· The Find Sequence function is not able to locate sequences containing non-printing

control characters (ASCII decimal code < 32) or other special characters (decimal
code > 127). This is due to the nature of the ASCII display. Search using the HEX or
Decimal communication window tab instead.

· In ASCII mode, the Find Sequence function will treat date/time stamps and any other
comments in the same way as regular communication data. In HEX / Decimal /

70

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Binary mode, all additional information is ignored as long as it does not look like a
character byte value.

9.7 Dialog: Send Sequence Parameter

Type in one or several value(s) for a Send Sequence with wildcards here. As with the
Edit Send/Receive Sequence dialog, you may use control character shortcuts or
clipboard functions.
Parameter No.
A Send Sequence can contain any number of wildcards. Each set of consecutive
wildcards is considered a separate parameter. The value for each parameter is entered
separately.

Minimum Characters Required
For each '?' wildcard exactly one character is required. Therefore, the minimum number
of characters required is equal to the number of '?' wildcards within one parameter.

NOTE: While the Send Sequence Parameter dialog is shown, all serial communication
is paused. Docklight does not receive any data and does not send any (periodical)
Send Sequences.

9.8 Dialog: Project Settings - Communication

Menu Tools > Project Settings... | Communication

Communication Mode

Send/Receive
Docklight acts both as transmitter and receiver of serial data. This mode is used when
Testing the functionality or the protocol implementation of a serial device or simulating a
serial device.
Naming conventions: The received data (RX) will be displayed and processed as
"Channel 1", the transmitted data (TX) will be displayed as "Channel 2".

Monitoring
Docklight receives serial data on two different communication channels. This mode is
used, for example, when Monitoring the communication between two devices.
Naming conventions: The serial data from device 1 is "Channel 1", the data from device
2 is "Channel 2".

Communication Channels - Serial COM ports, Docklight TAP/VTP, network
TCP/UDP, HID, Named Pipes
In Docklight Scripting, a communication channel can be configured as
· Serial COM port (RS232, RS422 or RS485),
· TAP port for Docklight Tap monitoring
· VTP port for Docklight Tap Pro or Tap 485 monitoring
· Network communication socket for TCP or UDP
· HID connections for USB or Bluetooth devices
· Named Pipes client

The following settings can be used:

Setting / Examples Description

COMxxx The channel is connected to a serial COM port.

71

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

COM1
COM256

Use the dropdown list to see all COM ports available on your
PC from the Windows operating system.

TAPx

TAP0
TAP1

The channel is connected to one of the Docklight Tap
monitoring data directions. The TAP connections are only
available if Communication Mode is set to 'Monitoring', the
Docklight Tap is plugged in and the Docklight Tap USB
device drivers are installed properly.

VTPx

VTP0
VTP1

The channel is connected to one of the Tap Pro / Tap 485
monitoring data directions, similar to the Docklight Tap
application using TAPx settings.

RemoteHost:RemotePort

192.168.1.100:10001
NIC.COM:80
LOCALHOST:504

The channel acts a TCP client.
When starting communications, it connects to the host and
TCP port specified. For RemoteHost you can enter
· an IP4 address, e.g. 192.168.1.100
· a host name, e.g. NIC.COM (for accessing a server on

the Internet) or the Windows NetBIOS name for another
computer on your local network.

· the LOCALHOST keyword which always points to the
computer Docklight is running on. This is equivalent to
using the loopback IP address 127.0.0.1.

SERVER:LocalPort

SERVER:10001
SERVER:80
SERVER:504

The channel acts as a TCP server. When communication is
started, Docklight accepts one connection from a TCP
client. When a client is connected, further connection
attempts are rejected.

PROXY:LocalPort

PROXY:10001

Same as SERVER, but in Monitoring Mode it will control the
second channel according to the connection accepted by
the server. If the second channel forcefully closes a
connection, the PROXY server drops the accepted
connection, too.

UDP:RemoteHost:Port

UDP:10.0.0.1:8001
UDP:LOCALHOST:10001

The channel acts as a UDP peer. Transmit data is sent to
the destination RemoteHost:Port, and Docklight listens to
UDP data on the local UDP port number Port.
When using a channel setting like UDP:LOCALHOST:10001
you effectively create a loopback, similar to a serial port
loopback, where and all outgoing data is immediately
received.

UDP:RemoteHost
:RemotePort:
LocalPort

UDP:10.0.0.1:8001:8002

The channel acts as a UDP peer, but using different port
numbers for outgoing and incoming data. Data is transmitted
to RemotePort, and Docklight listens on the LocalPort.

UDP:LocalPort

UDP:10001

The channel acts as a UDP server. Docklight listens for
UDP data on LocalPort. Send data is transmitted to the
source IP and port number of the last UDP packet
received.

PIPE:myNamedPipe
PIPEREAD:myNamedPip
e
PIPEWRITE:myNamedPi
pe

Client connection to a Named Pipe with read/write access
Client connection with read access only
Write access only

USBHID:vendorId
:productId

USBHID:4D8:F708

USB HID input / output report
Docklight opens a connection to the specified USB HID
device (or a Bluetooth HID device) and allows sending and
receiving HID input and output report data.

72

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

(or use USB Device Path)
USBHID:\\?
\hid#vid_04d8&pid_...

The Docklight communication display is report-based: Each
input report generates a new Docklight time stamp and
prints the original HID report data, including the input report
ID as the first byte, if > 0.

USBHID:vendorId
:productId:P

USBHID:4D8:F708:P

USB HID access, protocol based.
Only the actual payload data is displayed, without the
leading Input Report ID byte and/or trailing zero bytes. Time
stamps are generated according to the usual time stamp
rules, not before every report.

USBHID:vendorId
:productId:I

USBHID:4D8:F708:I

USB HID access, but with variable output report ID as part
of your Send Sequence data. In this mode, all Send
Sequence definitions require an extra byte at the start of the
sequence, which sets the actual Output Report ID to use.

USBHID:vendorId
:productId:
[P],outputID,outputPaylo
adSize

USBHID:4D8:F708:,1,63
USBHID:4D8:F708:P,2

USB HID extended syntax:
outputID: if specified, use this Output Report ID, instead of
the default zero
outputPayloadSize: if specified, override the report length
and ignore the value Windows reports via
HID_CAPS.OutputReportByteLength

PIPE:myNamedPipe
PIPEREAD:myNamedPip
e
PIPEWRITE:myNamedPi
pe

Client connection to a Named Pipe with read/write access
Client connection with read access only
Write access only

Monitoring Mode - Channel Combinations And Their Applications
In Monitoring Mode, two communication channels are available, which can be set up
individually. This allows Docklight Scripting to be used in a large number of different
applications and test environments. Below is a list of typical channel combinations:

Communication
Channel Settings

Example
Settings

Application

Ch1: COM Port
Ch2: COM Port

COM1
COM2

Monitoring Serial Communications Between Two
Devices using a Docklight Monitoring Cable

Ch1: Docklight
Tap
Ch2: Docklight
Tap

TAP0
TAP1

Monitoring Serial Communications Between Two
Devices using a Docklight Tap

Ch1: Tap Pro or
485
Ch2: Tap Pro or
485

VTP0
VTP1

Monitoring Serial Communications Between Two
Devices using a Docklight Tap Pro or Docklight Tap
485

Ch1: COM Port
Ch2: TCP Server

COM1
SERVER:1000
1

Emulating a Serial Device Server. A client can
connect to the Docklight server on port 10001 and
talk to the serial device connected on COM1.

Ch1: TCP Client
Ch2: TCP Server

10.0.0.1:502
SERVER:502

Monitoring a Client/Server TCP Connection where
Docklight acts as a gateway between the two sides.

Ch1: UDP Peer
Ch2: UDP Peer

UDP:10.0.0.1:8
001

UDP:10.0.0.2:8
002

Monitoring and forwarding a UDP transmission,
similar to the TCP example above. Note that for
each channel you need to specify a different UDP
port, because each channel needs to listen on its
own separate port number.

73

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

COM Port Settings (COM, TAP and VTP channels only)

Baud Rate
Choose a standard baud rate from the dropdown list, or use a non-standard baud rate
by typing any integer number between 110 and 9999999.

NOTE: Non-standard baud rates may not work correctly on all COM ports, dependent on
the capabilities of your COM port's hardware UART chip. You will receive no warning, if
any non-standard rate cannot be applied.

NOTE: Although Docklight's Project Settings allow you to specify baud rates up to 9
MBaud, this does not mean Docklight is able to handle this level of throughput
continuously. The average data throughput depends very much on your PC's
performance and the Docklight display settings. See also How to Increase the
Processing Speed.

NOTE: There are many COM ports drivers and applications that do not use actual
RS232/422 or 485 transmission, and do not require any of the RS232 communication
parameters. In some cases such COM port drivers even return an error when trying to
set the RS232 parameters, so Docklight would fail to open the COM channel. Use the
Baud Rate setting None for these applications.

Data Bits and Stop Bits
Specify the number of data bits and stop bits here. As with the baud rate, some of the
available settings may not be supported by the COM port device(s) on your PC.

Tap 485 Sign. Level.
The Docklight Tap Pro / Tap 485 support additional voltage levels, besides the standard
RS232 voltages:
· RS485/422 - the differential voltage levels for RS485 and RS422 bus applications.
· Inverted - Inverted RS232/TTL mode, where the mark state (or logical 1) is the

positive voltage, and the space state (logical 0) is the negative voltage or zero volts.

Parity
All common parity check options are available here. (The settings 'Mark' and 'Space' will
probably not be used in practical applications. 'Mark' specifies that the parity bit always
is 1, 'Space' that the parity bit is always 0, regardless of the character transmitted.)

Parity Error Character
This is the character that replaces an invalid character in the data stream whenever a
parity error occurs. You should specify an ASCII character (printing or non-printing)
that does not usually appear within your serial data stream. Characters may be defined
by entering the character itself or entering its decimal ASCII code (please enter at least
two digits).

NOTE: Choose "(ignore)" for the Parity Error Character if you need to transmit/receive
the parity bit but Docklight should preserve all incoming characters, even when the
parity bit is wrong. This is useful for applications where a 9th bit is used for addressing
purposes and not for error checking.

Using Baud Rate Scan - VTP channels only

Docklight Tap Pro / Tap 485 devices offer a baud rate scan / autodetect mode. To
activate baud rate scan, choose None from the Baud Rate setting and close the

Project Settings dialog. Now start the communication using menu Run > Start
communication (F5). The Docklight Tap Pro / Tap 485 now scans the communication
independently in both directions. If serial data could be detected in either data direction,

74

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

the most probable settings are displayed as comments in the Communication Window.
They are also are noted in the communications status bar under the main toolbar.

NOTE: The accuracy of this autodetection feature depends on the actual data stream
present during the scan. A continuous stream of highly random data leads to high
detection accuracy, while small transfers of individual bytes or repeating patterns may
lead to wrong baud rates, data bit or parity guesses.

9.9 Dialog: Project Settings - Flow Control

Menu Tools > Project Settings... | Flow Control

Used to specify additional hardware or software flow control settings for serial
communications in Docklight Send/Receive Mode.

Flow Control Support

Off
No hardware or software flow control mechanism is used. RTS and DTR are enabled
when the COM port is opened.

Manual
Use this mode to control the RTS and DTR signals manually and display the current
state of the CTS, DSR, DCD and RI lines. If flow control is set to "Manual", an additional
status element is displayed in the Docklight main window. You may toggle the RTS and
DTR lines by double clicking on the corresponding indicator.

NOTE: Flow control signals are not treated as communication data and will not be
displayed in the communication window or logged to a file.

Hardware Handshaking, Software Handshaking
Support for RTS/CTS hardware flow control and XON/XOFF software flow control.
These are expert settings rarely required for recent communication applications.

RS485 Transceiver Control
Some RS232-to-RS485 converters require manual RTS control, i.e. the RS232 device
(PC) tells the converter when it should enable its RS485 driver for transmission. If you
choose "RS485 Transceiver Control", the COM port sets RTS to High before transmitting
the first character of a Send Sequence, and resets it to Low after the last character has
been transmitted.

NOTE: Many USB-to-Serial converters or virtual COM port drivers do not implement the
Windows RTS_CONTROL_TOGGLE mode properly. If you experience problems with
RS485 Transceiver Control, try using a PC with an on-board COM interface or a
standard PCI COM card.

9.10 Dialog: Project Settings - Communication Filter

Menu Tools > Project Settings... | Communication Filter

Contents Filter
Use this option if you do not need to see the original communication data on the serial
line and only require the additional comments inserted by a Receive Sequence. This is
useful for applications with high data throughput, where most of the data is irrelevant for
testing and you only need to watch for very specific events. These events (and related
display output) can be defined using Receive Sequences.

75

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

Channel Alias
This allows you to re-label the two Docklight data directions according to your specific
use case. E.g. [Docklight] / [Device] instead of [TX] / [RX]. Or [Master] / [Slave] instead
of [TAP0] / [TAP1].

9.11 Dialog: Options

Menu Tools > Options...

Display

Formatted Text Output (Rich Text Format)
used for setting the appearance of the Docklight communication window. The two
different serial data streams, "Channel 1" and "Channel 2", may be displayed using
different colors and styles. The standard setting uses different colors for the two
channels, but using different font styles (e.g. Italics for "Channel 2") is also possible.
You may also choose the overall font size here.

NOTE: If you change the font size, the communication window contents will be deleted.
For all other changes, Docklight will try to preserve the display contents.

Plain Text Output (faster display, but no colors & fonts)
The formatted text output is similar to a word processor and consumes a considerable
amount of CPU time. It also requires frequent memory allocation and deallocation which
might decrease your PC performance. So if you are monitoring a high-speed
communication link, but still want to keep an eye on the serial data transferred, try using
the "Plain Text Output" format.

Control Characters (ASCII 0 - 31)
For communication data containing both printing ASCII text as well as non-printing
control characters, it is sometimes helpful to see the names of the occurring control
characters in the ASCII mode display window. Docklight provides an optional display
settings to allow this. You can also suppress the control characters (except CR and LF)
for cases when this would clutter your display.

Display Modes

Communication Window Modes
By default, Docklight will display four representations of the serial data streams: ASCII,
HEX, Decimal and Binary. You may deactivate some of these modes to increase
Docklight's overall performance. For example, the Binary representation of the data is
rarely required. Disabling Binary mode for the communication window will considerably
increase processing speed. Even when turned off for the communication window,
logging in all formats is still possible.

See also the Plain Text Output option above.

Date/Time Stamps

Adding a Date/Time Stamp
Docklight adds a date/time stamp to all data that is transmitted or received. You may
choose to insert this date/time stamp into the communication window and the log file
whenever the data flow direction changes between Channel 1 and Channel 2.

For applications where the data flow direction does not change very often, you may
want to have additional date/time stamps at regular time intervals. For this, activate the
Clock - additional date/time stamp... option then and choose a time interval.

76

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

On a half duplex line (e.g. 2 wire RS485), changes in data direction are difficult to
detect. Still, in most applications there will be a pause on the communication bus before
a new device starts sending. Use the Pause detection... option to introduce additional
time stamps and make the pauses visible in your communication log.

Date/Time Format
Docklight offers time stamps with a resolution of up to 1/1000 seconds (1 millisecond).
For compatibility to earlier Docklight versions (V1.8 and smaller), 1/100 seconds is
available, too.

NOTE: The resulting time tagging accuracy can be considerably different, e.g. 10-20
milliseconds only. The actual accuracy depends on your serial communications
equipment, your PC configuration, the Docklight Display Settings (see above) and the
Docklight Expert Options. See the section How to Obtain Best Timing Accuracy for
details.

Control Characters Shortcuts

Here you can define your own keyboard shortcuts for ASCII Control Characters (ASCII
code < 32), or for any character code > 126. Keyboard shortcuts can be used within
the following Docklight dialogs and functions
· Dialog: Edit Send Sequence
· Dialog: Edit Receive Sequence
· Dialog: Find Sequence
· Dialog: Send Sequence Parameter
· Keyboard Console

For each character from decimal code 0 to 31 and from 127 to 255, you can define a
keyboard combination to insert this character into a sequence (Shortcut). You may
also define a letter which is used to display this control character when editing a
sequence in ASCII mode (Editor).

Double click to change the value of a Shortcut or Editor field.

Predefined shortcuts are:
Ctrl+Enter for carriage return / <CR> / decimal code 13
Ctrl+Shift+Enter for line feed / <LF> / decimal code 10

9.12 Dialog: Expert Options

Menu Tools > Expert Options...

Expert Options are additional settings for specialized applications with additional
requirements (e.g. high time tagging accuracy).

Performance

Communication Driver Mode

Use External / High Priority Process mode to work around a common problem for
any Windows user mode application: unspecified delays and timing inaccuracies can
be introduced by the Windows task/process scheduling, especially if you are running
other applications besides Docklight.

External / High Priority Process mode is recommended for high accuracy / low
latency monitoring using the Docklight Tap.

77

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

NOTE: For even higher and guaranteed time tagging accuracy, use the Docklight Tap
Pro / Tap 485 accessories. Their accuracy does not depend on Windows and driver
latencies, and High Priority Process mode is not required for Tap Pro and Tap 485
applications.

In External / High Priority Process mode, the data collection in Docklight becomes a
separate Windows process with "Realtime" priority class. It will be executed with higher
priority than any other user application or additional application software such as
Internet Security / Antivirus. For best results Docklight needs to be Run as
administrator. Otherwise the data collection process will run with the maximum priority
permitted by the OS, but not "Realtime class".

External / High Priority Process mode must be used with care, especially when you
intend to monitor a high-speed data connection with large amounts of data. The PC
might become unresponsive to user input. To resolve such a situation, simply "pull the
plug": First disconnect the data connections or the monitoring cable to bring down the

CPU load and restore the responsiveness. Then choose Stop communication in
Docklight.

NOTE: See the section How to Obtain Best Timing Accuracy for some background
information on timing accuracy.

Docklight Monitoring Mode

When Monitoring Serial Communications Between Two Devices, all received data from
one COM port is re-sent on the TX channel of the opposite COM port by default ("Data
Forwarding"). This is intended for special applications that require routing the serial
data traffic through Docklight using standard RS232 cabling.

Use the No Data Forwarding Expert Option for applications with two serial COM ports
where you need to avoid that any TX data is sent. This can be used to improve
performance when using a Docklight Monitoring Cable, or to work around problems
caused with unstable serial device drivers.

For Docklight Tap applications (e.g. using Communication Channel TAP0 / TAP1), the
'Data Forwarding' setting has no effect. The Docklight Tap is accessed in read-only
mode always, and no data is forwarded.

Devices

Windows COM Devices

Use Disable I/O error detection when receiving repeated error messages like this:

DOCKLIGHT reports: General I/O error on COM1

NOTE: Docklight uses Windows Serial Communications in "overlapped I/O" mode for
best efficiency and timing accuracy, and it continuously evaluates errors from the
related Win32 API calls. In rare situations like COM devices using faulty or outdated
COM device drivers, such errors can appear even in standard read/write operation. In
this case, you can use this option to revert to the behavior of Docklight V2.2 and earlier
versions: simply ignoring such errors.

Tap Pro / Tap 485

78

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

The firmware update functions for our Docklight Tap Pro / Docklight Tap 485 hardware
accessories are only required in rare situations. E.g. if you are using an older device
(< year 2017) which does not support the baud rate scan feature yet.

9.13 Keyboard Console

The Keyboard Console tool allows you to send keyboard input directly to the serial port.

It can be activated using the menu Tools > Keyboard Console On. The keyboard
console is only available for communication mode Send/Receive.

After activating the keyboard console, click in the communication window and type
some characters.

Docklight will transmit the characters directly through the selected serial port. The
communication window will display the characters the same way it does a Send
Sequence.

NOTE: The Keyboard Console tool supports pasting and transmitting a character
sequence from the clipboard, using Ctrl + V. This is similar to pasting clipboard data
inside the Edit Send Sequence Dialog. Clipboard contents that exceeds the maximum
sequence size of 1024 characters gets truncated.

NOTE: The keyboard console is not a full-featured terminal and does not support
specific terminal standards, such as VT 100. The Enter key is transmitted as <CR>
(ASCII 13) plus <LF> (ASCII 10). The ESC key sends <ESC> (ASCII 27). Use control
character shortcuts to send other ASCII control characters.

NOTE: The keyboard console does not support inserting ASCII characters by
pressing/holding ALT and using the numeric keypad. Please use the Edit Send
Sequences dialog in HEX or Decimal representation to create any ASCII character
code > 127.

9.14 Checksum Specification

Checksum specifications are used in Edit Send Sequence and Edit Receive Sequence
dialogs and in the Docklight Scripting method CalcChecksum. See Calculating and
Validating Checksums for a general overview.

Supported Checksum Specifications / checksumSpec Argument

checksumSpec Checksum algorithm applied

MOD256 Simple 8 bit checksum: Sum on all bytes, modulo 256.

XOR 8 bit checksum: XOR on all bytes.

CRC-7 7 bit width CRC. Used for example in MMC/SD card
applications. An alternative checksumSpec text for the same
checksum type would be:
CRC:7,09,00,00,No,No
See the "CRC:width, polynomial..." syntax described in the
last row.

CRC-8 8 bit width CRC, e.g. for ATM Head Error Correction. Same
as:
CRC:8,07,00,00,No,No

CRC-DOW 8 bit width CRC known as DOW CRC or CCITT-8 CRC. Can
be found in Dallas iButton(TM) applications. Same as:
CRC:8,31,00,00,Yes,Yes

MOD65536 Simple 16 bit checksum: Sum on all bytes, modulo 65536.

79

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

CRC-CCITT 16 bit width CRC as designated by CCITT. Same as:
CRC:16,1021,FFFF,0000,No,No

CRC-XMODEM 16 bit width CRC similar to CRC-CCITT, but the initial value
is zero. Same as:
CRC:16,1021,0000,0000,No,No

CRC-16 16 bit width CRC as used in IBM Bisynch, ARC. Same as:
CRC:16,8005,0000,0000,Yes,Yes

CRC-MODBUS 16 bit width CRC as used in Modbus. Similar to CRC-16, but
with a different init value. Same as:
CRC:16,8005,FFFF,0000,Yes,Yes

CRC-32 32 bit CRC as used in PKZip, AUTODIN II, Ethernet, FDDI.
Same as:
CRC:32,04C11DB7,FFFFFFFF,FFFFFFFF,Yes,Yes

-MOD256
or
LRC

Similar to MOD256, but returns the negative 8 bit result, so
the sum of all bytes including the checksum is zero.
This is equivalent to what is known as LRC (Longitudinal
redundancy check) used e.g. in POS applications.

LRC-ASCII Like -MOD256 / LRC, but it expects the source data to be
HEX numbers as readable ASCII text. See the MODBUS
ASCII example below.

CRC:width, polynomial,
init,
finalXOR, reflectedInput,
reflectedOutput

Generic CRC calculator, where all CRC parameters can be
set individually:
width : The CRC width from 1..32.
polynomial : HEX value. The truncated CRC polynomial.
init : HEX value. The initial remainder to start off the
calculation.
finalXor : HEX value. Apply an XOR operation on the
resulting remainder before returning it to the user.
reflectedInput : Yes = Reflect the data bytes (MSB becomes
LSB), before feeding them into the algorithm.
reflectedOutput : Yes = Reflect the result after completing
the algorithm. This takes places before the final XOR
operation.

Remarks

Each of the predefined CRC algorithms (CRC-8, CRC-CCITT, ...) can be replaced by a
specification string for the generic CRC computation (CRC:8,07,00...) as described
above. We have carefully tested and cross-checked our implementations against
common literature and resources as listed in the CRC Glossary.

Unfortunately there are a lot of CRC variations and algorithms around, and choosing
(not to mention: understanding) the right CRC flavor can be a rather difficult job. A good
way to make sure your CRC calculation makes sense is to run it over an ASCII test
string of "123456789". This is the most commonly used testing string, and many
specifications will refer to this string and provide you the correct checksum the CRC
should return when applied on this string.

Checksums in Edit Send Sequence / Edit Receive Sequence

In the Checksum tab, choose one of the predefined definition strings from the drop-
down list, or type in your own definition in the following format:

[(startPos, len)] checksumSpec [A or L] [@ targetPos] [# optional user comment]

with anything inside [] being an optional part.

Part Description

80

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

checksumSpec Required. String that specifies the checksum algorithm and its
parameters, according to the checksumSpec Format table above.

(startPos, len)
e.g.
(1, 4)

Optional. Start and length of the character area that is used to
calculate the checksum. By default everything before the checksum
result is used.

A Optional. If used, the resulting checksum value is converted into a
HEX number as readable ASCII text. See the MODBUS ASCII
example below.

L Optional. Little Endian - the resulting checksum value is stored with the
least significant byte (LSB) first. Default is Big Endian / MSB first.

@ targetPos

e.g.
@ -4

Optional. Specifies the first character position for storing the resulting
checksum value.
By default Docklight writes the checksum result to the last sequence
data positions, unless you have specified "A" for ASCII result. In this
case, the results is stored one character before the end, so there is
still space for a "end of line" character, typically a CR as in Modbus
ASCII.

comment You can type in a comment about this checksum specification

Remarks

startPos, len and targetPos support negative values, too, as a way to specify positions
relative to the end of the sequence and not relative to the start of the sequence.
Examples:
startPos is -4 : start calculating at the 4th character from the end.
len is -1 : use everything until the end of the sequence.
targetPos is -1 : first (and only) byte of the result is stored at the last sequence
character position.
targetPos is -2 : result is stored starting at the 2nd character from the end.
targetPos is -3 : result is stored starting at the 3rd character from the end.

Examples

Checksum
Specification

Send Sequence
Example

Actual TX Data Remarks

(off, no
checksum)

01 | 02 | 03 | 04 |
05 | 00

01 02 03 04 05
00

after a # you can type in
any comment to
describe your checksum

MOD256 # simple
one byte sum on
all but the last
character

01 | 02 | 03 | 04 |
05 | 00

01 02 03 04 05
0F

As a checksum
placeholder, an extra 00
was added, but you can
use any value from 00-
FF.

CRC-MODBUS L #
Modbus RTU
checksum. Lower
Byte first
('Little
Endian')

01 | 06 | 01 | 02 |
00 | 07 | FF | FF

01 06 01 02 00
07 68 34

CRC-MODBUS is a 16
bit checksum which is
placed at the last two
character positions in
the sequence data by
default.

(2, -5) LRC-
ASCII A @ -4
MODBUS ASCII
checksum is LRC
over readable
HEX data,
excluding start

: | 1 | 1 | 0 | 3 | 0
| 0 | 6 | b | 0 | 0 |
0 | 3 | X | X | r | n

:1103006b00037E<
CR><LF>

LRC-ASCII treats the
sequence data as a
readable HEX string,
where each data byte is
represented by two
characters.
Using the A option
produces a readable 2-

81

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference

':' and end
'CR/LF'

letter checksum text,
instead of a one
character result.
The @ -4 places the
result at the 4th
character position from
the right (leaving the
trailing CR / LF intact).

CRC:8,07,00,00,N
o,Yes
CRC with
custom, non-
standard spec

01 | 02 | 03 | 04 |
05 | 00

01 02 03 04 05
3D

Rare or custom CRCs
flavors can be calculated
by Docklight, but you
need to know the
required CRC
calculation parameters.
For more details see the
resources listed in the
CRC Glossary.

Reference (Scripting)

83

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10 Reference (Scripting)

10.1 VBScript Basics

If you already know Visual Basic® or Visual Basic® for Applications (VBA), VBScript
will be very familiar. Have a look at the definitions and examples listed below. For getting
started, try some of the following examples by copying & pasting the code into the script
editor window and running the script. Docklight Scripting also comes with a number of
sample scripts for you to try out.

This chapter introduces some basic VBScript functions and features. For a complete
reference, please see the original documentation from Microsoft® at the following
locations:
· Visual Basic Scripting Edition (or go to www.microsoft.com and search for

"VBScript")
· VBScript User's Guide
· VBScript Language Reference.

TIP: Use the ScriptEngine function to find out which version of VBScript is installed on
your computer.

NOTE: Docklight Scripting executes the VBScript code in "safe mode" (safe subset)
and disallows potentially harmful actions. For example, creating a
"FileSystemObject" (file I/O) is one of the actions disallowed in the VBScript safe
subset. The Docklight script will abort with an error message. Please contact our e-mail
support if you have special requirements and need to use "unsafe" VBScript
statements. By popular request, file I/O is now easily possible using Docklight's FileInput
/ FileOutput objects.

Docklight-Specific Features

· Docklight Script Commands - The DL Object
· Docklight OnSend / OnReceive event procedures
· Docklight FileInput / FileOutput Object for Reading and Writing Files

VBScript Basic Features by Categories

· Control Structures (Decision Structures, Loop Structures)
· Variables, Arrays, Constants and Data Types
· Operators
· Date/Time Functions
· Miscellaneous

VBScript Basic Features in Alphabetical Order

· Date Function
· Day Function
· Do Until ...Loop
· Do...Loop While
· For...Next
· Hour Function
· If...Then
· If...Then...Else
· InputBox Function

http://msdn.microsoft.com/en-us/library/t0aew7h6(VS.85).aspx
http://www.microsoft.com

84

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

· LBound Function
· Minute Function
· Month Function
· Now Function
· ScriptEngine Function
· Second Function
· Select Case
· Time Function
· Timer Function
· UBound Function
· While...Wend
· Year Function

10.1.1 Copyright Notice

The following sections of the "VBScript Basics" chapter are based on the Microsoft®
Windows Script V5.6 Documentation help file Script56.CHM. For this help file, the
following copyright notice applies: "© 2001 Microsoft® Corporation. All rights
reserved."

The usage of Microsoft® copyrighted material is according to the Microsoft® "Ten
Percent Rule" (see http://www.microsoft.com/permission).

10.1.2 Control Structures

VBScript control structures allow you to control the flow of your script's execution. To
learn more about specific control structures, see the following topics:

· Decision Structures An introduction to decision structures used for branching.
· Loop Structures An introduction to loop structures used to repeat processes.

10.1.2.1 Decision Structures

· If...Then

Use an If...Then structure to execute one or more statements conditionally. You can
use either a single-line syntax or a multiple-line block syntax:

If condition Then statement

If condition Then
statements
End If

The condition is usually a comparison. If condition is True, VBScript executes all the
statements following the Then keyword. You can use either single-line or multiple-line
syntax to execute just one statement conditionally (these two examples are equivalent):

If anyDate < Now Then anyDate = Now

If anyDate < Now Then
 anyDate = Now
End If

http://www.microsoft.com/permission

85

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Notice that the single-line form of If...Then does not use an End If statement. If you
want to execute more than one line of code when condition is True, you must use the
multiple-line block If...Then...End If syntax.

· If...Then...Else

Use an If...Then...Else block to define several blocks of statements, one of which will
execute:

If condition1 Then
[statementblock-1]
[ElseIf condition2 Then
[statementblock-2]] ...
[Else
[statementblock-n]]
End If

· Select Case

VBScript provides the Select Case structure as an alternative to If...Then...Else for
selectively executing one block of statements from among multiple blocks of
statements. A Select Case statement provides capability similar to the If...Then...Else
statement, but it makes code more readable when there are several choices.

' Example
Select Case Weekday(now)
 Case 2
 DL.AddComment "Monday"
 Case 3
 DL.AddComment "Tuesday"
 Case 4
 DL.AddComment "Wednesday"
 Case 5
 DL.AddComment "Thursday"
 Case 6
 DL.AddComment "Friday"
 Case Else
 DL.AddComment "Weekend!"
End Select

10.1.2.2 Loop Structures

· Do Until ...Loop

'Example
Do Until DefResp = vbNo
 MyNum = Int (6 * Rnd + 1) ' Generate a random integer
between 1 and 6.

 DefResp = MsgBox (MyNum & " Do you want another number?",
vbYesNo)

Loop

· Do...Loop While

'Example

86

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Do
 MyNum = Int (6 * Rnd + 1) ' Generate a random integer
between 1 and 6.

 DefResp = MsgBox (MyNum & " Do you want another number?",
vbYesNo)

Loop While DefResp = vbYes

· While...Wend

'Example
Dim Counter
Counter = 0 ' Initialize variable.
While Counter < 20 ' Test value of Counter.
 Counter = Counter + 1 ' Increment Counter.
 DL.AddComment Counter
Wend ' End While loop when Counter > 19

· For...Next

'Example
For I = 1 To 5
 For J = 1 To 4
 For K = 1 To 3
 DL.AddComment I & " " & J & " " & K
 Next
 Next
Next

10.1.3 Variables, Arrays, Constants and Data Types

You often need to store values temporarily when performing calculations with VBScript.
For example, you might want to calculate several values, compare them, and perform
different operations on them, depending on the result of the comparison.

· Variables

Variable names follow the standard rules for naming anything in VBScript. A variable
name:
· Must begin with an alphabetic character.
· Cannot contain an embedded period.
· Must not exceed 255 characters.
· Must be unique in the scope in which it is declared.

' Examples
ApplesSold = 10 ' The value 10 is passed to the variable.
ApplesSold = ApplesSold + 1 ' The variable is incremented.

· Arrays
Arrays allow you to refer to a series of variables by the same name and to use a
number (an index) to tell them apart. This helps you create smaller and simpler code
in many situations, because you can set up loops that deal efficiently with any
number of cases by using the index number.

' Example
Dim A(10)

87

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

A(0) = 256
A(1) = 324
A(2) = 100
' ...
A(10) = 55

LBound Function
Returns the smallest available subscript for the indicated dimension of an array.

Syntax

LBound (arrayname [,dimension])

Part Description

arrayname Name of the array variable; follows standard variable naming
conventions.

dimension Optional. Whole number indicating which dimension's lower bound
is returned. Use 1 for the first dimension, 2 for the second, and so
on. If dimension is omitted, 1 is assumed.

UBound Function
Returns the largest available subscript for the indicated dimension of an array.

Syntax

UBound (arrayname [,dimension])

Part Description

arrayname Name of the array variable; follows standard variable naming
conventions.

dimension Optional. Whole number indicating which dimension's lower bound
is returned. Use 1 for the first dimension, 2 for the second, and so
on. If dimension is omitted, 1 is assumed.

' Example
Dim A(100,3,4)
UBound(A,1) ' returns 100
UBound(A,2) ' returns 3
UBound(A,3) ' returns 4

· Constants

A Const statement can represent a mathematical or date/time quantity:

' Example
Const conPi = 3.14159265358979

· Data Types

VBScript has only one data type called a Variant. A Variant is a special kind of data
type that can contain different kinds of information, depending on how it is used.
Because Variant is the only data type in VBScript, it is also the data type returned by
all functions in VBScript.

88

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Variant Subtypes
Beyond the simple numeric or string classifications, a Variant can make further
distinctions about the specific nature of numeric information. For example, you can
have numeric information that represents a date or a time. When used with other date
or time data, the result is always expressed as a date or a time. You can also have a
rich variety of numeric information ranging in size from Boolean values to huge
floating-point numbers. These different categories of information that can be
contained in a Variant are called subtypes. Most of the time, you can just put the kind
of data you want in a Variant, and the Variant behaves in a way that is most
appropriate for the data it contains.

The following table shows subtypes of data that a Variant can contain.

Subtype Description

Empty Variant is uninitialized. Value is 0 for numeric variables or
a zero-length string ("") for string variables.

Null Variant intentionally contains no valid data.

Boolean Contains either True or False.

Byte Contains integer in the range 0 to 255.

Integer Contains integer in the range -32,768 to 32,767.

Currency -922,337,203,685,477.5808 to 922,337,203,685,477.5807.

Long Contains integer in the range -2,147,483,648 to
2,147,483,647.

Single Contains a single-precision, floating-point number in the
range -3.402823E38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E38 for positive values.

Double Contains a double-precision, floating-point number in the
range -1.79769313486232E308 to -4.94065645841247E-
324 for negative values; 4.94065645841247E-324 to
1.79769313486232E308 for positive values.

Date (Time) Contains a number that represents a date between January
1, 100 to December 31, 9999.

String Contains a variable-length string that can be up to
approximately 2 billion characters in length.

Object Contains an object.

Error Contains an error number.

10.1.4 Operators

· Arithmetic

Description Symbol

Exponentiation ^

Unary negation -

Multiplication *

Division /

Integer division \

89

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Modulus arithmetic Mod

Addition +

Subtraction -

String concatenation &

· Comparison

Description Symbol

Equality =

Inequality <>

Less than <

Greater than >

Less than or equal to <=

Greater than or equal to >=

Object equivalence Is

· Logical

Description Symbol

Logical negation Not

Logical conjunction And

Logical disjunction Or

Logical exclusive Xor

Logical equivalence Eqv

Logical implication Imp

10.1.5 Date/Time Functions

· Date Function

'Example Date Function
DL.ClearCommWindows
DL.AddComment Date ' prints the current system date.

· Time Function

'Example Time Function
DL.ClearCommWindows
DL.AddComment Time ' prints the current system time.

· Timer Function

90

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

'Example Timer Function
'The Timer function returns the number of seconds that have
elapsed

'since 12:00 AM (midnight).
StartTime = Timer
For i = 1 To 1000
Next
DL.AddComment "Duration [milliseconds] = " & (Timer -
StartTime) * 1000

· Now Function

'Example Now Function
Dim MyVar
MyVar = Now ' MyVar contains the current date and time.

· Day Function

'Example Day Function
DL.AddComment Day(Now)

· Month Function

'Example Month Function
DL.AddComment Month(Now)

· Year Function

'Example Year Function
Dim MyDate
MyDate = #December 7, 1968# ' Assign a date.
DL.AddComment Year(MyDate)

· Hour Function

'Example Hour Function
DL.AddComment Hour(Now)

· Minute Function

'Example Minute Function
DL.AddComment Minute(Now)

· Second Function

'Example Second Function
DL.AddComment Second(Now)

91

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.1.6 Miscellaneous

· InputBox Function

Displays a prompt in a dialog box, waits for the user to input text or click a button, and
returns the contents of the text box.

TIP: Use the Docklight-specific DL.InputBox2 method for a dialog box that always
appears on the same screen as the Docklight Scripting main window. Or see the
DL.GetKeyState function on how to wait and react to keyboard or mouse input.

Syntax

result = InputBox (prompt[, title][, default][, xpos][, ypos][, helpfile, context])

Part Description

prompt Required. String expression displayed as the message in the dialog
box. The maximum length of prompt is approximately 1024 characters,
depending on the width of the characters used. If prompt consists of
more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or carriage
return plus linefeed character combination (Chr(13) & Chr(10))
between each line.

title Optional. String expression displayed in the title bar of the dialog box.
If you omit title, the application name is placed in the title bar.

default Optional. String expression displayed in the text box as the default
response if no other input is provided. If you omit default, the text box
is displayed empty.

xpos Optional. Numeric expression that specifies, in twips, the horizontal
distance of the left edge of the dialog box from the left edge of the
screen. If xpos is omitted, the dialog box is horizontally centered.

ypos Optional. Numeric expression that specifies, in twips, the vertical
distance of the upper edge of the dialog box from the top of the
screen. If ypos is omitted, the dialog box is vertically positioned
approximately one-third of the way down the screen.

helpfile Optional. String expression that identifies the Help file to use to
provide context-sensitive Help for the dialog box. If helpfile is
provided, context must also be provided.

context Optional. Numeric expression that identifies the Help context number
assigned by the Help author to the appropriate Help topic. If context is
provided, helpfile must also be provided.

'Example InputBox Function
Dim MyInput
MyInput = InputBox("Please enter text", "My Title", "Example
Text")

DL.AddComment MyInput ' Add the current input as comment

· MsgBox Function

Displays a message box, waits for the user to click a button, and returns a value that
indicates which button the user clicked.

TIP: Use the Docklight-specific DL.MsgBox2 method for a message box that always
appears on the same screen as the Docklight Scripting main window. Or see the
DL.SetUserOutput function on how to create an additional user output area and
display extra user information.

92

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Syntax

result = MsgBox (prompt[, buttons][, title][, xpos][, ypos][, helpfile, context])

Part Description

prompt Required. Same as InputBox Function above.

buttons Optional, common values are a combination (sum) of the below
constants:

Constant Value Description
vbOKOnly 0 OK button only (default)
vbOKCancel 1 OK and Cancel buttons
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Yes, No, and Cancel buttons
vbYesNo 4 Yes and No buttons
vbRetryCancel 5 Retry and Cancel buttons
vbCritical 16 Critical message
vbQuestion 32 Warning query
vbExclamation 48 Warning message
vbInformation 64 Information message
vbDefaultButton1 0 First button is default (default)
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default

TIP: For a full list of all constants available, see the Microsoft VBA
documentation for MsgBox.

title Optional. Same as InputBox Function above.

xpos,
ypos,
helpfile,
context

Optional. Same as InputBox Function above.

result Returns the user action:

Constant Value Description
vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
vbRetry 4 Retry button pressed
vbIgnore 5 Ignore button pressed
vbYes 6 Yes button pressed
vbNo 7 No button pressed

'Example MsgBox Function
result = MsgBox("Run this test?", 3, "My Title")
If result = 6 Then

DL.AddComment "Yes button pressed"
ElseIf result = 7 Then

DL.AddComment "No button pressed"
Else

DL.AddComment "Canceled"
End If

· ScriptEngine Function

Returns a string representing the scripting language in use.

93

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Use the following script example to get the complete description of script language
and version number.

'Example using the ScriptEngine Function
DL.AddComment GetScriptEngineInfo

Function GetScriptEngineInfo
 Dim s
 s = "" ' Build string with necessary info.
 s = ScriptEngine & " Version "
 s = s & ScriptEngineMajorVersion & "."
 s = s & ScriptEngineMinorVersion & "."
 s = s & ScriptEngineBuildVersion
 GetScriptEngineInfo = s ' Return the results.
End Function

10.2 Docklight Script Commands - The DL Object

The global DL object is used to access Docklight-specific functions from a VBScript
program.

DL Methods
DL.AddComment
DL.ClearCommWindows
DL.GetReceiveCounter
DL.GetDocklightTimeStamp
DL.OpenProject
DL.Pause
DL.Quit
DL.ResetReceiveCounter
DL.SendSequence
DL.StartCommunication
DL.StopCommunication
DL.StartLogging
DL.StopLogging
DL.WaitForSequence

DL Methods (Advanced)
DL.CalcChecksum
DL.ConvertSequenceData
DL.GetChannelSettings
DL.GetChannelStatus
DL.GetCommWindowData
DL.GetEnvironment
DL.GetHandshakeSignals
DL.GetKeyState
DL.GetReceiveComments
DL.InputBox2
DL.LoadProgramOptions
DL.PlaybackLogFile
DL.SaveProgramOptions
DL.SetChannelSettings
DL.SetContentsFilter
DL.SetHandshakeSignals
DL.SetUserOutput
DL.SetWindowOutput

94

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.ShellRun
DL.UploadFile

DL Properties
DL.NoOfSendSequences
DL.NoOfReceiveSequences

Additional Docklight Scripting Features
OnSend / OnReceive Event Procedures
FileInput / FileOutput Objects for Reading and Writing Files
Side Channels - Using Multiple Data Connections

10.2.1 Methods

10.2.1.1 AddComment

Adds a user-defined text to the communication data window and log file.

Return Value

Void

Syntax

DL.AddComment [comment] [, timeStampAfterComment] [, lineBreakAndPadding]

The AddComment method syntax has these parts:

Part Description

comment Optional. String containing the comment to add to the
communication window(s) or log file(s).
If comment is left out, AddComment will produce a line break
only.

timeStampAfterComme
nt

Optional Boolean value.
False (Default) = No additional time stamp.
True = Add a time stamp after the comment. The time stamp is
added when processing the next serial data character, not
immediately after printing the comment. This is similar to how
the "Additional time stamp..." option in the Receive Sequence
dialog works.

lineBreakAndPadding Optional Boolean value.
True (Default) = Additional space characters are added before
and after the text, to separate it from the communication data.
A line break is added after the comment.
False = No additional spaces or line break. This is especially
useful in combination with the Communication Filter option,
when you want to create the actual screen output entirely with
the AddComment method.

Remarks

AddComment supports the Receive Sequence comment macros %_S (bell, "beep
signal") , %_L (line break) and %_T (Timestamp) for convenience. See comment
macros for details.

You cannot use ASCII control characters like decimal code 08 (Backspace) to emulate
terminal functions / display formatting. The only exception is decimal code 07 (Bell),
which can be use to produce a 'beep signal', depending on your Windows sound
scheme.

95

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Example

' Example AddComment

DL.ClearCommWindows
DL.AddComment "Hello World!"
' Additional line break
DL.AddComment
' Use the '&' operator to concatenate strings and other
variables
r1 = 10
r2 = 20
DL.AddComment "Result 1 = " & r1 & " Result 2 = " & r2
' The VBScript constant vbCrLf can be used for an
' additional line break, too
DL.AddComment
DL.AddComment "Result 1 = " & r1 & vbCrLf
DL.AddComment "Result 2 = " & r2

' Disabling the line break and padding characters gives you
' better control over the actual output
DL.AddComment vbCrLf + "Here's some bit of info", False, False
DL.AddComment "rmation. " + vbCrLf, False, False

' A "beep" signal for user notification
DL.AddComment Chr(7)

10.2.1.2 ClearCommWindows

Deletes the contents of the communications window. This applies to all four
representations (ASCII, HEX, Decimal, Binary) of the communication window.

Return Value

Void

Syntax

DL.ClearCommWindows

Example

' Example ClearCommWindows

' fresh start
DL.ClearCommWindows
DL.AddComment "Test run started!"

10.2.1.3 GetReceiveCounter

Returns the current hit counter value for the specified Receive Sequence. The counter
is incremented each time the Receive Sequence is detected within the incoming data
stream. It can be reset using the ResetReceiveCounter command. The OpenProject and
StartCommunication commands also reset the hit counter to zero.

Return Value

Long

96

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Syntax

result = DL.GetReceiveCounter(nameOrIndex)

The GetReceiveCounter method syntax has these parts:

Part Description

nameOrIndex Required. String containing the Name or Sequence Index of a
Receive Sequence.

Remarks

See also WaitForSequence

Example

See WaitForSequence

10.2.1.4 GetDocklightTimeStamp

Returns the current Docklight date/time stamp, according to the following settings:

1. The Docklight date/time stamp format chosen in the Options dialog:
· Time stamp
· Date stamp
· Use time stamps with 1/100 seconds precision

2. The Windows setting for Region and Language > Formats > Short date and Long
time

The GetDocklightTimeStamp function is especially useful for printing additional time
information using the AddComment method.

Return Value

String

Syntax 1

result = DL.GetDocklightTimeStamp()

Remarks (Syntax 1)

GetDocklightTimeStamp adds a trailing space to the date/time string. This is for
historical reasons and compatibility. See Syntax 2 for a trimmed version. See also the
AddComment method.

Example 1

' Example GetDocklightTimeStamp

DL.ClearCommWindows
DL.StartCommunication
DL.AddComment "Communication started at " &
DL.GetDocklightTimeStamp()
DL.AddComment "Waiting for data..."

97

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

' Endless loop to prevent the script from terminating
immediately
Do
 DL.Pause 1 ' (the pause reduces CPU load while idle)
Loop

Syntax 2

result = DL.GetDocklightTimeStamp([myDateTime] [, milliseconds] [, trimmed])

Part Description

myDateTime Optional. a VBScript Date (Time) variable which provides the date/time
information in resolution "1 second".
0 (default) = Use Docklight's own time base.

milliseconds Optional integer value with corresponding milliseconds from 0..999.
-1 (default) = Use Docklight's own time base.
-2 = Do NOT add the milliseconds part.

trimmed Optional.
True = Remove the trailing space (see Syntax 1).
False (Default) = use the original format for compatibility.

Remarks (Syntax 2)

The extended syntax is typically used for formatting Receive Sequence timing
information obtained within a Sub DL_OnReceive() event procedure. See the Example
2.

The argument milliseconds = -2 is useful when creating an export file for software like
Excel that expects a standard Windows time format without milliseconds.

10.2.1.5 OpenProject

Opens an existing Docklight project file (.ptp file).

Return Value

Void

Syntax

DL.OpenProject filePathName

The OpenProject method syntax has these parts:

Part Description

filePathName Required. String containing the file path (directory and file name) of
the Docklight project file (.ptp file) to open. The file extension .ptp can
be omitted. If no directory is specified, Docklight uses the current
working directory.

Remarks

If filePathName is not a valid Docklight project file or does not exist, Docklight reports
an error and the script execution is stopped.

If filePathName is an empty string, a file dialog will be displayed to choose a project
file.

98

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

All Receive Sequence counters are reset when (re)opening a Docklight project, see the
ResetReceiveCounter function.

Example

' Example OpenProject

' Load a Docklight project file
DL.OpenProject "D:\My Docklight Files\Test.ptp"

' Load the file 'Test.ptp' from the current working directory
DL.OpenProject "Test"

10.2.1.6 Pause

Pauses the script's execution for a specified number of milliseconds.

Return Value

Void

Syntax

DL.Pause milliseconds

The Pause method syntax has these parts:

Part Description

milliseconds Required. Long value for the delay in milliseconds.
Minimum value is 0 (Pause returns immediately).
Maximum value is 86000000 (23.88 hours).

Remarks

Docklight in general and the Pause function do not provide a very exact timing with
milliseconds precision, so the actual delay may vary from the milliseconds value.

During a Pause, no DL_OnReceive() procedure calls can be processed. If you need to
process DL_OnReceive() events while waiting, see the pauseWithEvents() code
described at Example 2.

Example

' Example Pause

' Send a test command
DL.SendSequence "Test1"
' 5 seconds delay
DL.Pause 5000
' Send another command
DL.SendSequence "Test2"

' Typical main loop for processing data
Do
 DL.Pause 1 ' reduce CPU load
 countSomeThings = DL.GetReceiveCounter(1)
 ' ... do more things ...
Loop

99

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.2.1.7 Quit

Stops the Docklight script immediately.

Return Value

Void

Syntax

DL.Quit

Remarks

If communication has been started using a script command (see StartCommunication) ,
the communication is stopped, too. If a log file has been opened using StartLogging, the
file is closed. Files opened using FileInput or FileOutput are closed as well.

Using VBScript's built-in "Stop" statement, or other VBScript debugging features that
alter the program flow, is not possible in Docklight Scripting. Always use the DL.Quit
statement to terminate script execution.

10.2.1.8 ResetReceiveCounter

Resets one or all Receive Sequence hit counter(s). Also resets the search algorithm
which checks the character stream for a matching Receive Sequence (see example
code below).

Return Value

Void

Syntax

DL.ResetReceiveCounter [nameOrIndex]

The ResetReceiveCounter method syntax has these parts:

Part Description

nameOrIndex Optional. String containing the Name or Sequence Index of a Receive
Sequence. If specified, only the corresponding counter is reset. If
nameOrIndex is omitted, all counters are reset.

Remarks

See also GetReceiveCounter and WaitForSequence

Example

See WaitForSequence for a basic example.

A second application is demonstrated below - resetting the receive sequence detection
each time a new Send Sequence is transmitted. This is especially useful when Docklight
is testing a serial device, and the sequence detection should not get confused by
incomplete or faulty packets received earlier. See also DL_OnSend().

' Example ResetReceiveCounter
' Reset sequence detection each time a new sequence is sent

100

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

' Endless loop to prevent the script from terminating
immediately
Do
 DL.Pause 1 ' (the pause reduces CPU load while idle)
Loop

Sub DL_OnSend()
 DL.ResetReceiveCounter
End Sub

10.2.1.9 SendSequence

Sends a Send Sequence or a custom data sequence. Starts the communication, if not
already running (see StartCommunication).

Return Value

Void

Syntax 1

DL.SendSequence nameOrIndex [, parameters] [, representation]

Sends out the Send Sequence that matches nameOrIndex. The SendSequence
method syntax 1 has these parts:

Part Description

nameOrIndex Required. String containing the Name of the Send Sequence. The first
Send Sequence from the list with a name that matches nameOrIndex
is used. As an alternative, you may pass an integer value specifying
the Sequence Index. Valid Sequence Index range is from 0 to
(NoOfSendSequences - 1).

parameters Optional. String containing one or several parameter value(s) for a
Send Sequence with wildcards.
Parameters are passed in ASCII representation by default. The space
character is used to separate several different parameters for
different wildcard areas.

To pass parameters in HEX, Decimal or Binary representation, use
the optional representation argument described below. In HEX,
Decimal or Binary representation, the comma (",") is used as a
separator between several different parameters.

representation Optional. String value to define the format for parameters list "A" =
ASCII (default), "H" = Hex, "D" = Decimal or "B" = Binary.

Remarks (Syntax 1)

If the wrong number of parameters is provided by the parameters argument, or the
parameter length does not match the corresponding wildcards region, Docklight will not
raise an error, but apply the following rules:
· If too few parameters are provided, or the parameter string is too short, all remaining

wildcards are filled up with a blank character. If you are using representation =
"A" (ASCII) , the wildcards are filled with space characters (ASCII code 32). For all
other formats, the wildcards will be filled with ASCII code 0.

· If too many parameters are provided, or the parameter string is too long, the
parameter(s) will be truncated or ignored.

101

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Syntax 2

DL.SendSequence "", customSequence [, representation]

Sends out a custom data sequence. The SendSequence method syntax 2 has these
parts:

Part Description

customSequenc
e

Required. String containing the sequence to send. The sequence is
passed in ASCII representation by default. For HEX, Decimal or
Binary sequence data, use the optional representation argument
described below.

representation Optional. String value to define the format for customSequence. "A"
= ASCII (default), "H" = HEX, "D" = Decimal or "B" = Binary.

Example

' Example SendSequence

' Predefined Send Sequences
' (0) Test: Test
' (1) One: One<#><#><#><CR><LF>
' (2) Two: One<?><?><?>Two<#><#><#>

DL.StartCommunication
DL.ClearCommWindows
' Send sequence without parameter
DL.SendSequence "Test"
' Send sequence with one parameter
DL.SendSequence "One", "100"
' Send sequence with two parameters
DL.SendSequence "Two", "100 20"
' Pass two parameters in HEX representation, including spaces
and control characters
DL.SendSequence "Two", "20 31 20, 30 0D 0A", "H"
' Send custom sequence data, not using a predefined Send
Sequence
DL.SendSequence "", "Custom Data"

' And now using a loop and the loop variable
' for the Send Sequence parameter values
For i = 1 To 10

parString = i & " " & i+1 ' use a space to separate
parameters

DL.SendSequence "Two", parString
Next

DL.StopCommunication

After running the script, the Docklight communication window could look like this:

08/05/2008 13:50:35.622 [TX] - Test
08/05/2008 13:50:35.631 [TX] - One100<CR><LF>

08/05/2008 13:50:35.665 [TX] - One100Two20
08/05/2008 13:50:35.682 [TX] - One 1 Two0<CR><LF>

102

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

08/05/2008 13:50:35.699 [TX] - Custom Data
08/05/2008 13:50:35.713 [TX] - One1 Two2
08/05/2008 13:50:35.745 [TX] - One2 Two3
08/05/2008 13:50:35.771 [TX] - One3 Two4
08/05/2008 13:50:35.807 [TX] - One4 Two5
08/05/2008 13:50:35.846 [TX] - One5 Two6
08/05/2008 13:50:35.878 [TX] - One6 Two7
08/05/2008 13:50:35.907 [TX] - One7 Two8
08/05/2008 13:50:35.922 [TX] - One8 Two9
08/05/2008 13:50:35.955 [TX] - One9 Two10
08/05/2008 13:50:35.987 [TX] - One10 Two11

10.2.1.10 StartCommunication

Opens the communication port(s) and enables the data transfer. This corresponds to

the Docklight menu Run > Start communication

Return Value

Void

Syntax

DL.StartCommunication

Remarks

The methods SendSequence, WaitForSequence and UploadFile will automatically open
the communication port(s), if they have not been opened before by using the
StartCommunication method.

See also StopCommunication.

10.2.1.11 StopCommunication

Stops the data transfer and closes the communication port(s). This corresponds to the

Docklight menu Run > Stop communication.

Return Value

Void

Syntax

DL.StopCommunication

Remarks

See the StartCommunication method for more information.

10.2.1.12 StartLogging

Creates new log file(s) and starts logging the incoming/outgoing serial data. This

corresponds to the Docklight menu Start Communication Logging ...

Return Value

Void

103

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Syntax

DL.StartLogging baseFilePath [, appendData] [, representations] [, format] [,
highspeed] [, noHeaders]

The StartLogging method syntax has these parts:

Part Description

baseFilePath Required. String containing the directory and base file name for the
log file(s).

appendData Optional Boolean value.
True (Default) = Append the new data to existing log file(s).
False = Overwrite existing log file(s). Previously saved logging data will
be lost.

representations Optional String to choose the log file representations.
"A" (ASCII), "H" (HEX), "D" (Decimal) and/or "B" (Binary).
Default value is "AHDB"
(create all four representations ASCII, HEX, Decimal, Binary).

format Optional Integer value.
0 (Default) = create plain text files (.txt)
1 = create HTML files for web browsers (.htm)
2 = create RTF Rich Text Format files (.rtf)

NOTE: For compatibility to V2.2. and earlier, it is also possible to use:
False = plain text (.txt)
True = HTML (.htm)

highspeed Optional Boolean value.
False (Default) = not used
True = Disable communication window while logging
(e.g. for monitoring high-speed communications on a slow PC).

noHeaders Optional Boolean value.
False (Default) = create a standard header "Docklight Log File
started..." after opening the file. Create a footer "Docklight Log File
stopped" when closing the file.
True = Do not create any additional header or footer information.

Remarks

See also logging and analyzing a test and the Create Log Files(s) Dialog for more
information on the StartLogging functionality and arguments described above.

If baseFilePath is an empty string, a file dialog will be displayed to choose the log file
path and base file name.

If StartLogging is called while another log file is still open from a previous
StartLogging call, the file is closed and the new file is created / opened. This allows
changing the log file name without losing any data.

The noHeaders flag is particularly useful when you are creating log data without time
stamps. You can then easily compare the result to previous test runs using an file
compare tool.

Example

' Example StartLogging

DL.ClearCommWindows
DL.StartLogging "C:\DocklightLogging"

104

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

' - opens four log files:
' 'C:\DocklightLogging_asc.txt'
' 'C:\DocklightLogging_hex.txt'
' 'C:\DocklightLogging_dec.txt'
' 'C:\DocklightLogging_bin.txt'
' Wait for 5 seconds
DL.Pause 5000
' Close the four log files
DL.StopLogging

Example 2

This is a more advanced example which demonstrates how to include a date/time stamp
in the log file name and start a new log file every hour

' Example 'One Log File per Hour'

' This is the base path and location where the log file(s) will
be stored
Const BASE_FILE_PATH = "logfile_"
' Create ASCII and HEX log files
Const LOG_REPRESENTATIONS = "AH"

currentLogFileName = ""
DL.StartCommunication
Do
 newLogFileName = getFileName()
 ' Time for starting a new file?
 If newLogFileName <> currentLogFileName Then
 DL.StartLogging newLogFileName, True,
LOG_REPRESENTATIONS
 currentLogFileName = newLogFileName
 End If
 DL.Pause 1 ' reduce CPU load
Loop

Function getFileName()
 dt = Now
 ' Compose a file name.
 ' The Right() functions ensure that all months, days,
 ' hours are printed with two decimals
 getFileName = BASE_FILE_PATH & Year(dt) & "_" & Right("0" &
Month(dt), 2) & "_" & Right("0" & Day(dt), 2) & "_" & Right("0"
& Hour(dt), 2) & "H"
End Function

10.2.1.13 StopLogging

Stops the logging and closes the log file(s) currently open. This corresponds to the

Docklight menu Stop Communication Logging.

Return Value

Void

Syntax

DL.StopLogging

105

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Remarks

See the StartLogging method for more information on log files.

10.2.1.14 WaitForSequence

Waits for one or several occurrences of a Receive Sequence and returns the
corresponding counter value (see GetReceiveCounter). Starts the communication, if not
already running (see StartCommunication).

Return Value

Long

Syntax

result = DL.WaitForSequence(nameOrIndex [, maxCounter] [, timeout])

The WaitForSequence method syntax has these parts:

Part Description

nameOrIndex Required. String containing the Name of the Receive Sequence to
count. The first Receive Sequence from the list with a name that
matches nameOrIndex is used. As an alternative, you may pass an
integer value specifying the Sequence Index. Valid Sequence Index
range is from 0 to (NoOfReceiveSequences - 1).

maxCounter Optional. Long number containing the counter limit until the function
returns. Default value is 1 (one): WaitForSequence returns after
detecting the first occurrence of the receive sequence. Return value
is 1 in this case.
If maxCounter is -1, WaitForSequence does not use a counter limit.
It will only return after a timeout (see below). Use maxCounter = -1 to
count all occurrences of a Receive Sequence within a limited period
of time.

timeout Optional. Long number specifying an additional timeout in
milliseconds. Default value is -1 (no timeout).
Maximum value is 86000000 (23.88 hours).

Remarks

The WaitForSequence method checks the number of "hits" for this Receive Sequence
since the communication has been started (see StartCommunication) or the counter
has been reset (see ResetReceiveCounter). WaitForSequence waits until the number
of "hits" specified by the maxCounter have been detected.

One basic application for WaitForSequence is waiting for a specific answer after
sending out a test command to your serial device. To make sure that you do not miss a
very quick response from your device, use the following command order:
1. Reset the counter(s) first using ResetReceiveCounter.
2. Send your test command using SendSequence
3. Now use WaitForSequence to wait for the expected answer

It is very important that you use ResetReceiveCounter before SendSequence.
ResetReceiveCounter will not only set the detection counter to zero, but also reset the
character matching process, so any characters that have been previously received are
not considered when looking for a sequence match. See also the remarks on wildcard
search for additional information on how Docklight handles Receive Sequence pattern
matching.

106

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

During a WaitForSequence, no DL_OnReceive() procedure calls can be processed. If
you need to process DL_OnReceive() events while waiting, see the
pauseWithEvents() code described at OnReceive Example 2.

If you need to wait for any of the Receive Sequences to trigger, the DL_OnReceive()
procedure provides the solution. See the OnReceive Example 3.

Example

' Example WaitForSequence

' Count the number of occurrences of
' the first Receive Sequence within a 10 seconds
' interval.
' Requires at least one Receive Sequence definition

DL.StartCommunication
DL.ClearCommWindows
result = DL.WaitForSequence(0 , -1, 10000)
DL.AddComment vbCrLf & vbCrLf & "Receive Sequence #0, hit count
= " & result
' alternative way to read the counter afterwards
DL.AddComment "Receive Sequence #0, hit count = " &
DL.GetReceiveCounter(0)

' Send the first Send Sequence and wait for a device response
(no timeout)
DL.AddComment vbCrLf & vbCrLf & "Sending data and waiting for
Receive Sequence #0"
DL.ResetReceiveCounter
DL.SendSequence 0
DL.WaitForSequence 0

10.2.2 Methods (Advanced)

10.2.2.1 CalcChecksum

Returns a checksum or CRC value for a given sequence, or a part of a sequence.

The CalcChecksum method is an advanced Docklight Scripting feature and requires
some knowledge about checksums in serial application protocols, and how Docklight
deals with send/receive data in general.

TIP: We recommend the section Calculating and Validating Checksums for introduction.
If the CRC-specific terms and parameters seem confusing to you, see the CRC
Glossary for some background information.

Return Value

String

Syntax

result = DL.CalcChecksum(checksumSpec, dataStr, [, representation] [, startPos]
[, endPos] [, bigEndian])

The CalcChecksum method syntax has these parts:

Part Description

107

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

checksumSpec Required. String that specifies the checksum algorithm and its
parameters. CalcChecksum supports predefined names for common
checksum algorithms, or you can pass a generic CRC specification
for calculating more exotic CRCs. Predefined names are:
"MOD256", "XOR", "CRC-8", "CRC-CCITT", "CRC-16", "CRC-
MODBUS" and "CRC-32"
See checksumSpec Format for the full format specification.

dataStr Required. String value that contains the input Sequence for the
checksum calculation, as for example returned by the
OnSend_GetData() function.

representation Optional. String value to define the format of the dataStr Sequence:
"H" = Hex (default), "A" = ASCII , "D" = Decimal or "B" = Binary.

startPos Optional Integer value. Specifies the character position where the
calculation should start. Default value is 1 (beginning of the dataStr
Sequence).

startPos also accepts negative values, e.g. -1 for "last character", -2
for "2nd character from the end", -3 for "3rd character from the end".

endPos Optional Integer value. Specifies the last character that should be
included in the calculation. Default value is the size of the dataStr
Sequence.

endPos also accepts negative values, see startPos above.

bigEndian Optional. Boolean value to define the byte order for result .
True (default): Use big-endian byte order (first character is most
significant)
False: use little-endian byte order (first character is least significant)

Remarks

The return value is a string with the CRC/checksum in the Docklight HEX sequence
format, e.g. "CB F4 39 26". The number of HEX bytes returned depends on the width of
the checksum algorithm. See the example script and communications window output
below.

With the help of CalcChecksum you can generate specific checksums for Send
Sequences on the fly, or use advanced checksum validations for received data. See the
Sub DL_OnSend() Event Procedure for details.

Standard checksums can already be processed without script code using the
Checksum part of the Edit Send Sequence / Edit Receive Sequence dialogs. See also
the related Modbus protocol example example.

Example

' Example CalcChecksum

DL.ClearCommWindows

DL.AddComment
DL.AddComment "Simple checksum (Mod 256) for '123456789'"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("MOD256",
"123456789", "A")

DL.AddComment
DL.AddComment "8 bit CRC (CRC DOW) for '123456789'"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("CRC-DOW",
"123456789", "A")

108

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.AddComment
DL.AddComment "16 bit CRC (CRC-16) for '123456789'"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("CRC-16",
"123456789", "A")

DL.AddComment
DL.AddComment "16 bit CRC (CRC-Modbus) for '123456789' in
'LittleEndian' - lower byte first"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("CRC-Modbus",
"123456789", "A", , ,False)

DL.AddComment
DL.AddComment "16 bit CRC (CRC-CCITT) for '123456789'"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("CRC-CCITT",
"123456789", "A")
DL.AddComment "Now do the same thing, but specify all CRC
details yourself..."
DL.AddComment "CalcChecksum = " &
DL.CalcChecksum("CRC:16,1021,FFFF,0000,No,No", "123456789",
"A")

DL.AddComment
DL.AddComment "32 bit CRC (CRC-32) for '123456789'"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("CRC-32",
"123456789", "A")

DL.AddComment
DL.AddComment "A 32 bit CRC (CRC-32) on the first 5 bytes of
HEX sequence 01 02 03 04 05 FF FF FF FF, result is Little
Endian / lowest byte first"
DL.AddComment "CalcChecksum = " & DL.CalcChecksum("CRC-32", "01
02 03 04 05", "H", 1, 5, False)

The above script code produces the following output in the Docklight communication
window:

 Simple checksum (Mod 256) for '123456789'
 CalcChecksum = DD

 8 bit CRC (CRC DOW) for '123456789'
 CalcChecksum = A1

 16 bit CRC (CRC-16) for '123456789'
 CalcChecksum = BB 3D

 16 bit CRC (CRC-Modbus) for '123456789' in 'LittleEndian' -
lower byte first
 CalcChecksum = 37 4B

 16 bit CRC (CRC-CCITT) for '123456789'
 CalcChecksum = 29 B1
 Now do the same thing, but specify all CRC details yourself...
 CalcChecksum = 29 B1

 32 bit CRC (CRC-32) for '123456789'
 CalcChecksum = CB F4 39 26

109

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 A 32 bit CRC (CRC-32) on the first 5 bytes of HEX sequence 01
02 03 04 05 FF FF FF FF, result is Little Endian / lowest byte
first
 CalcChecksum = F4 99 0B 47

10.2.2.2 ConvertSequenceData

Converts Sequence data to/from a float number, an integer number, or other common
types of data in technical applications.

Return Value

String

Syntax

result = DL.ConvertSequenceData(conversionType, source, [, representation] [,
bigEndian])

The ConvertSequenceData method syntax has these parts:

Part Description

conversionType Required. String that specifies the conversion type and direction.
See below for the list of conversions and examples.

source Required. Input data string for the conversion. This can be a Docklight
Sequence, e.g. "4B 06 9E 3F", or a string with the application value,
e.g. "1.234567". See below for details.

representation Optional. Format of the sequence string (either source or result,
depending on conversionType):
"H" = Hex (default), "D" = Decimal or "B" = Binary.

bigEndian Optional. Boolean value to define the byte order for integer or float
conversions.
True (default): Use big-endian byte order (first character is most
significant)
False: use little-endian byte order (first character is least significant)

The conversionType argument supports the following values and types of conversions:

Value Description

"toSingle" Convert source to a single precision float number.
source: IEEE single precision (32 bit) sequence
result: string with floating point number in non-localized format, uses
period (".") as the decimal separator.
Example:
DL.ConvertSequenceData("toSingle", "3F 9E 06 4B")
returns: 1.234567

"fromSingle" Convert source to a IEEE single precision (32 bit) sequence
source: string with floating point number. Both period (".") and comma
(",") are accepted as decimal separator.
result: 32 bit sequence data
Example:
DL.ConvertSequenceData("fromSingle", "1.234567")
returns: 3F 9E 06 4B

"toDouble" Convert source to a double precision float number.
source: IEEE double precision (64 bit) sequence
result: string with floating point number in non-localized format (see
above)
Example:

110

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.ConvertSequenceData("toDouble", "103 154 149 160
081 161 036 075", "D", False)
returns: 9.87987987987E+53

"fromDouble" Convert to a IEEE double precision (64 bit) sequence
source: string with floating point number. Both period (".") and comma
(",") are accepted as decimal separator.
result: 64 bit sequence data
Example:
DL.ConvertSequenceData("fromDouble",
"9.87987987987E+53", "D", False)
returns: 103 154 149 160 081 161 036 075

"fromText" Converts a plain text into a Hex, Decimal or Binary sequence.
E.g.
DL.AddComment DL.ConvertSequenceData("fromText",
"Hello World")
returns: 48 65 6C 6C 6F 20 57 6F 72 6C 64

bigEndian = false: If this option is used for "fromText", the resulting
sequence is without separator, e.g. 48656C6C6F20576F726C64

"toInteger16"
"fromInteger16"

Convert to/from a signed 16 bit integer value
Examples:
DL.ConvertSequenceData("toInteger16", "80 00")
returns: -32768
DL.ConvertSequenceData("fromInteger16", "-1")
returns: FF FF

"toUnsigned16"
"fromUnsigned1
6"

Same as "toInteger16" / "fromInteger16", but for unsigned 16 bit
integer data
Examples:
DL.ConvertSequenceData("toUnsigned16", "80 00")
returns: 32768
DL.ConvertSequenceData("fromUnsigned16", "65535",
"D")
returns: 255 255

"toInteger32"
"fromInteger32"

Convert to/from a signed 32 bit integer value
Examples:
DL.ConvertSequenceData("toInteger32", "00 00 00
80", "H", False)
returns: -2147483648
DL.ConvertSequenceData("fromInteger32", "-2", "H",
False)
returns: FE FF FF FF

"toUnsigned32"
"fromUnsigned3
2"

Same as "toInteger32" / "fromInteger32", but for unsigned 32 bit
integer data
Examples:
DL.ConvertSequenceData("toUnsigned32", "FF 00 FF
00")
returns: 4278255360
DL.ConvertSequenceData("fromUnsigned32",
"21121977", "D")
returns: 001 066 075 185

"toBool" Returns "True" if the first source character is <> 0
Example:
DL.ConvertSequenceData("toBool", "00")
returns: False
DL.ConvertSequenceData("toBool", "01 00")
returns: True

111

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

"toText" Converts sequence data into a text string with printing characters only
(see ASCII Character Set). ASCII code 0 - 31 and 127 - 255 are
filtered out and do not appear in the result.
source: sequence with the original data, including non-printing
character codes
result: the ASCII text using only ASCII code 32 - 126
Example:
DL.ConvertSequenceData("toText", "FF 48 65 6C 6C 6F
21 0D 00 00")
returns: Hello!

Remarks

Carefully check your protocol specification on the data format, including Endianness
(little endian / big endian).

When using the result of a "toSingle" or "toDouble" conversion for further calculations,
keep in mind that result can be a non-numeric strings like "NaN" (not a number) or "Inf"
(Infinity).

Note that "toText" is not the same as reading out a data sequence in ASCII
representation ("A"). Example:

DL.AddComment DL.OnSend_GetData("A")
DL.AddComment DL.ConvertSequenceData("toText",
DL.OnSend_GetData("H"))

could return the following:

 •Hello!<CR><NUL><NUL>
 Hello!

10.2.2.3 GetChannelSettings

Returns the current communication channel settings (COM port number or TCP
address, serial port settings).

NOTE: GetChannelSettings is a companion to the SetChannelSettings method, and
intended for advanced Docklight Scripting applications where control of the
communication channel settings is required.

Return Value

String

Syntax

result = DL.GetChannelSettings([channelNo])

The GetChannelSettings method syntax has these parts:

Part Description

channelNo Optional. Integer that specifies the communication channel if
Communication Mode: Monitoring is used. Default value is 1 (Channel
1).

Remarks

112

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

GetChannelSettings returns a string with the current serial or TCP settings for the
specified communication channel.

If the channel is a serial port, the return value has the following format:
COMxxx: BaudRate, Parity, DataBits, StopBits, FlowControl, ParityErrorChar
e.g. "COM1:9600,NONE,8,1,OFF,63"

If the channel is a TCP client, the return value is the current IP address and TCP port
number, e.g. "192.0.0.1:3001".

If the channel is a TCP server, the return value is the string "SERVER:" plus the TCP
port number, e.g. "SERVER:3001"

See also the SetChannelSettings method for a detailed overview on the return value data
format, and a more complex example on how to manipulate channel settings during
script runtime.

Example

' Example GetChannelSettings

DL.AddComment "Comm. Channel 1 Settings = " &
DL.GetChannelSettings()
' The following command will only work,
' if Docklight Communication Mode is 'Monitoring (receive
only)'
DL.AddComment "Comm. Channel 2 Settings = " &
DL.GetChannelSettings(2)

The example could produce the following output in the Docklight Communication
Window:

 Comm. Channel 1 Settings = COM1:9600,NONE,8,1,OFF,63

 Comm. Channel 2 Settings = SERVER:10001

10.2.2.4 GetChannelStatus

Returns the current communication channel status (closed, open, waiting for TCP
connection, or error).

Return Value

Integer

Syntax

result = DL.GetChannelStatus([channelNo])

The GetChannelStatus method syntax has these parts:

Part Description

channelNo Optional. Integer that specifies the communication channel if
Communication Mode: Monitoring or Side Channels are used. Default
value is 1 (Channel 1).

Remarks

113

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

GetChannelStatus returns the following values:

result Description

0 Channel is closed, communications is stopped (see also
StopCommunication)

1 Channel is open and ready to transmit/receive data.
TCP server or TCP client mode: Connection established.

2 TCP server or TCP client mode: Waiting for connection.
COM port with RTS/CTS hardware flow control: Waiting for handshake
signal.

3 Channel error, e.g. after a SetChannelSettings command that
specified a non-existing COM port number.

See also SetChannelSettings and GetChannelSettings.

Example

' Example GetChannelStatus
' (requires Docklight in Send/Receive mode)

DL.ClearCommWindows

DL.AddComment "COM port access"
DL.SetChannelSettings "COM3:9600,NONE,8,1", 1
DL.AddComment "GetChannelStatus before StartCommunication = " &
DL.GetChannelStatus(1)
DL.StartCommunication
DL.AddComment "GetChannelStatus after StartCommunication = " &
DL.GetChannelStatus(1)
DL.StopCommunication

DL.AddComment
DL.AddComment "TCP client mode"
DL.AddComment "Connecting to docklight.de ..."
DL.SetChannelSettings "docklight.de:80", 1
DL.StartCommunication
' wait until connected
Do
 commStatus = DL.GetChannelStatus(1)
 DL.AddComment "GetChannelStatus = " & commStatus
 DL.Pause 10
Loop Until commStatus <> 2
If commStatus = 1 Then
 DL.AddComment "Connected."
Else
 DL.AddComment "Error!"
End If
DL.StopCommunication

After running the script on a computer with a built-in COM3 port (e.g. modem) and
Internet connection, the communications window could look like this:

 COM port access
 GetChannelStatus before StartCommunication = 0
 GetChannelStatus after StartCommunication = 1

 TCP client mode
 Connecting to docklight.de ...

114

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 GetChannelStatus = 2
 GetChannelStatus = 2
 GetChannelStatus = 2
 GetChannelStatus = 2
 GetChannelStatus = 1
 Connected.

10.2.2.5 GetCommWindowData

Returns the accumulated contents of the communication windows buffer.

NOTE: This method is for special applications. For many standard uses cases, the
OnSend / OnReceive event procedures, or the GetReceiveComments method will be the
preferred solution.

Return Value

String

Syntax

result = DL.GetCommWindowData([representation])

The GetCommWindowData method syntax has these parts:

Part Description

representation Required. String value to define the window buffer format requested:
"A" = ASCII (default), "H" = Hex, "D" = Decimal or "B" = Binary.

Remarks

Only a representation enabled in Docklight Options – Communication Window Modes

can be used. By default, this is ASCII, HEX and Decimal. If required, load different

options using LoadProgramOptions.

The maximum size of the GetCommWindowData buffer is 128000 characters. If

more communication data is accumulating without calling GetCommWindowData, the

oldest data gets deleted.

10.2.2.6 GetEnvironment

Returns the value of a Windows environment variable in the currently active user profile,
or a value of one of the Docklight-specific environment variables described below.

Return Value

String

Syntax

result = DL.GetEnvironment(name)

The GetEnvironment method syntax has these parts:

Part Description

name Required.
name can be:
1) The name of the Windows environment variable. (Not including the
%-signs around it that are used in the Windows Command Shell
cmd.exe).

115

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

2) One of the Docklight-specific names listed below

Docklight Scripting Environment Variables

Name Description

DOCKLIGHT_VERSION Docklight Scripting application version

DOCKLIGHT_SCRIPTDIR the folder the script runs in

DOCKLIGHT_DIALOGDIR the folder used for the last script file dialog used

DOCKLIGHT_PORTLIST list of COM ports available on this PC

DOCKLIGHT_SENDSEQ list of all Send Sequence names in the current Docklight
project (.ptp file)

DOCKLIGHT_RECEIVESEQ list of all Receive Sequence names

DOCKLIGHT_SENDSEQDEF list of all Send Sequences Name and Sequence in HEX
format. Name and Sequence are returned in separated
text lines

DOCKLIGHT_SENDSEQDEF:
SequenceName

Lists the definition only for the sequence names that
match SequenceName.

SequenceName can contain wildcards, e.g. you can
use:
DOCKLIGHT_SENDSEQDEF:Test*

DOCKLIGHT_RECEIVESEQDE
F

same as DOCKLIGHT_SENDSEQDEF but for Receive
Sequences

Remarks

The list of environment variables used in the example below is just an example.

TIP: For a list of variables available on your current user profile, open a Windows
Command Processor window (Windows Key + R, then type cmd), then type SET and
press Enter.

NOTE: In Docklight Scripting V2.0 and earlier this method was called
GetEnvironmentVariable. The old name is still supported for compatibility reasons. It
was changed to avoid confusion with the Windows API function of the same name.

Example

' Example GetEnvironment

nameList =
"ALLUSERSPROFILE,APPDATA,COMPUTERNAME,HOMEDRIVE,HOMEPATH,LOCALA
PPDATA,LOGONSERVER,NUMBER_OF_PROCESSORS,OS,PROCESSOR_ARCHITECTU
RE,PROCESSOR_IDENTIFIER,PROCESSOR_LEVEL,PROCESSOR_REVISION,PUBL
IC,TEMP,TMP,USERDOMAIN,USERNAME,USERPROFILE"

DL.AddComment "Running Docklight Scripting " &
DL.GetEnvironment("DOCKLIGHT_VERSION")
nameArray = Split(nameList , ",")
For i = 0 To UBound(nameArray)
 name = nameArray(i)
 DL.AddComment name & " = " & DL.GetEnvironment(name)
Next

On a Windows 10 notebook, the communications window output could look like this:

116

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 Running Docklight Scripting Docklight Scripting V2.4.5
 ALLUSERSPROFILE = C:\ProgramData
 APPDATA = C:\Users\docklight\AppData\Roaming
 COMPUTERNAME = DOCK-OH
 HOMEDRIVE = C:
 HOMEPATH = \Users\docklight
 LOCALAPPDATA = C:\Users\docklight\AppData\Local
 LOGONSERVER = \\DOCK-OH
 NUMBER_OF_PROCESSORS = 4
 OS = Windows_NT
 PROCESSOR_ARCHITECTURE = x86
 PROCESSOR_IDENTIFIER = Intel64 Family 6 Model 78 Stepping 3,
GenuineIntel
 PROCESSOR_LEVEL = 6
 PROCESSOR_REVISION = 4e03
 PUBLIC = C:\Users\Public
 TEMP = C:\Users\docklight\AppData\Local\Temp
 TMP = C:\Users\docklight\AppData\Local\Temp
 USERDOMAIN = DOCK-OH
 USERNAME = docklight
 USERPROFILE = C:\Users\docklight

10.2.2.7 GetHandshakeSignals

Returns the current handshake signal states (CTS, DSR, DCD, RI) as an integer bit
value, in the same way the Receive Sequence function character ‘!’ works.

Return Value

Integer

Syntax

result = DL.GetHandshakeSignals()

Remarks

result is a bit value with the following components:

Bit No. Decimal Value Handshake Signal

0 001 CTS = High

1 002 DSR = High

2 004 DCD = High

3 008 RI (Ring Indicator) = High

In Tap Pro / Tap 485 applications, GetHandshakeSignals returns the following
extended set of handshake signal states:

Bit No. Decimal Value Handshake Signal

0 001 CTS = High (DCE side / Docklight Receive Channel 2)

1 002 DSR = High (DCE side / Channel 2)

2 004 DCD = High (DCE side / Channel 2)

3 008 RI (Ring Indicator) = High (DCE side / Channel 2)

4 016 RTS = High (DTE side / Channel 1)

5 032 DTR = High (DTE side / Channel 1)

See also SetHandshakeSignals for controlling the state of the RTS and DTR lines.

117

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Example

' Example GetHandshakeSignals
DL.StartCommunication
Do
 DL.AddComment DL.GetDocklightTimeStamp() & " -
GetHandshakeSignals() = " & DL.GetHandshakeSignals()
 DL.Pause 200
Loop

Example Communication Window output:

 6/23/2012 10:07:44.244 - GetHandshakeSignals() = 0
 6/23/2012 10:07:44.469 - GetHandshakeSignals() = 48
 6/23/2012 10:07:44.677 - GetHandshakeSignals() = 48
 6/23/2012 10:07:44.884 - GetHandshakeSignals() = 48

NOTE: It can take 5-10 milliseconds after StartCommunication until
GetHandshakeSignals reports the correct signal state.

10.2.2.8 GetKeyState

Returns the state of a specific keyboard key, mouse button or similar input.

Syntax

result = DL.GetKeyState(virtKey)

The GetKeyState method syntax has these parts:

Part Description

virtKey Required integer value. An ASCII or virtual key code.
If they requested key is a digit from 0-9, or a letter from A-Z, the
corresponding ASCII code is used.
For other keys and buttons, see the Virtual-Key Codes table available
in the Microsoft Windows Docs.

Remarks

The GetKeyState argument and return value correspond to the Windows GetKeyState
function from the Winuser.h library.

For virtual keys (e.g. F1-F12, multimedia keys, mouse buttons a.s.o), you can use the
VBScript declarations in the GetKeyState_ImportFile_VirtualKeys.pts file from the
ScriptSamples\Extras\GetKeyState_Example folder. We recommend copying the file to
your own script folder and include it using the #include directive.

Example

' Example GetKeyState

' Two virtual key declarations, taken from
GetKeyState_ImportFile_VirtualKeys.pts
Const VK_F2 = &h71
Const VK_LBUTTON= &h01

Do

118

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.AddComment "Example for F2 function key:
DL.GetKeyState(VK_F2)=" & DL.GetKeyState(VK_F2)

If keyDown(Asc("D")) Then
DL.AddComment "D key is pressed"

End If
If keyDown(VK_F2) Then

DL.AddComment "F2 key is pressed"
End If
If keyDown(VK_LBUTTON) Then

DL.AddComment "Left mouse button is pressed"
End If
DL.Pause 500

Loop

Function keyDown(virtKey)
keyDown = (DL.GetKeyState(virtKey) And 128) > 0

End Function

Example Communication Window output:

 Example for F2 function key: DL.GetKeyState(VK_F2)=1
 Example for F2 function key: DL.GetKeyState(VK_F2)=1
 Example for F2 function key: DL.GetKeyState(VK_F2)=1
 Left mouse button is pressed
 Example for F2 function key: DL.GetKeyState(VK_F2)=1
 Left mouse button is pressed
 Example for F2 function key: DL.GetKeyState(VK_F2)=1
 D key is pressed
 Example for F2 function key: DL.GetKeyState(VK_F2)=1
 Example for F2 function key: DL.GetKeyState(VK_F2)=-128
 F2 key is pressed
 Example for F2 function key: DL.GetKeyState(VK_F2)=0
 Example for F2 function key: DL.GetKeyState(VK_F2)=0
 Example for F2 function key: DL.GetKeyState(VK_F2)=0

10.2.2.9 GetReceiveComments

Returns a chronological list of all Receive Sequence comments issued, as an alternative
to the Sub DL_OnReceive() processing.

Return Value

String

Syntax

result = DL.GetReceiveComments()

Remarks

result contains all Receive Sequence Comments in chronological order, separated by a
line break, since the last call of GetReceiveComments. With the help of Receive
Sequence comment macros you can implement a parser for all incoming Receive
Sequence data, as an alternative to Sub DL_OnReceive().

NOTE: A maximum of 10000 Receive Sequence events are stored and returned by
GetReceiveComments, which should be sufficient for all practical applications.

119

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.2.2.10 InputBox2

Alternative to the original VBScript InputBox method.

Displays a prompt in a dialog box, waits for the user to input text or click a button, and
returns the contents of the text box. This dialog will always appear on the same screen
as the Docklight Scripting main window. It does not support the (rarely useful) optional
arguments xpos, ypos, helpfile and context of the VBScript InputBox method.

TIP: As an alternative, see also the DL.GetKeyState function on how to wait and react to
keyboard or mouse input.

Return Value

String

Syntax

result = DL.InputBox2 (prompt[, title][, default])

Part Description

prompt Required. String expression displayed as the message in the dialog box.
The maximum length of prompt is approximately 1024 characters,
depending on the width of the characters used. If prompt consists of
more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or carriage return
plus linefeed character combination (Chr(13) & Chr(10)) between each
line.

title Optional. String expression displayed in the title bar of the dialog box. If
you omit title, the application name is placed in the title bar.

default Optional. String expression displayed in the text box as the default
response if no other input is provided. If you omit default, the text box is
displayed empty.

'Example DL.InputBox2 Function
MyInput = DL.InputBox2("Please enter text", "My Title",
"Example Text")

DL.AddComment MyInput ' print the user input

10.2.2.11 MsgBox2

Alternative to the original VBScript MsgBox method.

Displays a message box, waits for the user to click a button, and returns a value that
indicates which button the user clicked. This dialog will always appear on the same
screen as the Docklight Scripting main window. It does not support the optional
arguments helpfile and context of the VBScript MsgBox method.

TIP: As an alternative, see the DL.SetUserOutput function on how to create an
additional user output area and show extra user information.

Return Value

Integer

Syntax

result = DL.MsgBox2 (prompt[, buttons][, title])

120

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Part Description

prompt Required. String expression displayed as the message in the dialog box.
The maximum length of prompt is approximately 1024 characters,
depending on the width of the characters used. If prompt consists of
more than one line, you can separate the lines using a carriage return
character (Chr(13)), a linefeed character (Chr(10)), or carriage return
plus linefeed character combination (Chr(13) & Chr(10)) between each
line.

buttons Optional, common values are a combination (sum) of the below
constants:

Constant Value Description
vbOKOnly 0 OK button only (default)
vbOKCancel 1 OK and Cancel buttons
vbAbortRetryIgnore 2 Abort, Retry, and Ignore buttons
vbYesNoCancel 3 Yes, No, and Cancel buttons
vbYesNo 4 Yes and No buttons
vbRetryCancel 5 Retry and Cancel buttons
vbCritical 16 Critical message
vbQuestion 32 Warning query
vbExclamation 48 Warning message
vbInformation 64 Information message
vbDefaultButton1 0 First button is default (default)
vbDefaultButton2 256 Second button is default
vbDefaultButton3 512 Third button is default

TIP: For a full list of all constants available, see the Microsoft VBA
documentation for MsgBox.

title Optional. String expression displayed in the title bar of the dialog box. If
you omit title, the application name is placed in the title bar.

result Returns the user action:

Constant Value Description
vbOK 1 OK button pressed
vbCancel 2 Cancel button pressed
vbAbort 3 Abort button pressed
vbRetry 4 Retry button pressed
vbIgnore 5 Ignore button pressed
vbYes 6 Yes button pressed
vbNo 7 No button pressed

'Example MsgBox2 Function
result = DL.MsgBox2("Run this test?", 3, "My Title")
If result = 6 Then

DL.AddComment "Yes button pressed"
ElseIf result = 7 Then

DL.AddComment "No button pressed"
Else

DL.AddComment "Canceled"
End If

10.2.2.12 LoadProgramOptions

Loads the Docklight program options from a file created using SaveProgramOptions.

Return Value

Void

121

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Syntax

DL.LoadProgramOptions filePathName

The LoadProgramOptions method syntax has these parts:

Part Description

filePathName Required. String containing the file path (directory and file name) of
the Docklight settings file to load. If no directory is specified,
Docklight uses the current working directory. If filePathName is an
empty string, a file dialog will be displayed to choose a file.

Remarks

See the SaveProgramOptions method for more information on saving and loading
Docklight program options.

10.2.2.13 PlaybackLogFile

Opens an existing Docklight Log File (HEX, Decimal or Binary representation) and
plays back (re-sends) the data from one communication direction of this log file.

Starts the communication, if not already running (see StartCommunication).

Return Value

Void

Syntax

DL.PlaybackLogFile filePathName [, dataDirection] [, timeInterval]

The PlaybackLogFile method syntax has these parts:

Part Description

filePathName Required. String containing the file path (directory and file name) of
the log file. If no directory is specified, Docklight uses the current
working directory. If filePathName is an empty string, a file dialog will
be displayed to choose a file.

dataDirection Optional String value. Specifies which of the two communication
channels recorded (TX or RX? COM1 or rather COM2?) should be
played back. If dataDirection is an empty string, the first channel that
appears in the log file is used.

timeInterval Optional Integer value. Use a pause time in milliseconds between two
messages instead of the original timing from the log file (see remarks
below).

Remarks

Playback is only possible in Communication Mode Send/Receive and only for log files
in HEX, Decimal or Binary representation. Both HTML (.htm) and plain text (.txt) files
can be used for playback.

If filePathName does not exist, Docklight reports an error and the script execution is
stopped.

The log file used must contain date/time stamps for the two communication directions.

122

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

filePathName needs to contain the original Docklight-style name extension to determine
the type of log file, e.g. "log1_hex.txt", "log1_dec.txt" or "log1_bin.txt". If filePathName
has a different format, a HEX log file is assumed.

PlaybackLogFile evaluates the date/time stamps from the log file and emulates the
timing of the original communications logged. If you want to change this, e.g. to slow
down things for debugging purposes, you can use the optional timeInterval argument.

Example

' Example PlaybackLogFile

' Playback the first data direction from a sample log file
DL.AddComment "Playback TX side"
DL.PlaybackLogFile "modbus_logfile_hex.txt"

' Same file, but now play the answers from the RX side
DL.AddComment
DL.AddComment
DL.AddComment "Playback RX side"
DL.PlaybackLogFile "modbus_logfile_hex.txt", "RX"

' Same file, but use a fixed time interval between the
individual sequences.
DL.AddComment
DL.AddComment
DL.AddComment "Playback TX with fixed 500 milliseconds
interval"
DL.PlaybackLogFile "modbus_logfile_hex.txt", "", 500

We assume that the log file modbus_logfile_hex.txt was created during a previous
Modbus communication session and contains the following information:
8/29/2006 18:45:23.19 [TX] - 01 04 00 00 00 01 31 CA
8/29/2006 18:45:23.34 [RX] - 01 04 02 FF FF B8 80
8/29/2006 18:45:33.14 [TX] - 02 04 00 00 00 01 31 F9
8/29/2006 18:45:33.29 [RX] - 02 04 02 27 10 E7 0C
8/29/2006 18:45:43.23 [TX] - 03 04 00 00 00 01 30 28
8/29/2006 18:45:43.39 [RX] - 03 04 02 00 00 C0 F0
8/29/2006 18:45:58.72 [TX] - 04 04 00 00 00 01 31 9F
8/29/2006 18:45:58.87 [RX] - 04 04 02 04 00 77 F0

After running the example script, the communications window could look like this:

 Playback TX side

4/26/2009 13:29:15.841 [TX] - 01 04 00 00 00 01 31 CA
4/26/2009 13:29:25.788 [TX] - 02 04 00 00 00 01 31 F9
4/26/2009 13:29:35.879 [TX] - 03 04 00 00 00 01 30 28
4/26/2009 13:29:51.367 [TX] - 04 04 00 00 00 01 31 9F

 Playback RX side

4/26/2009 13:29:51.545 [TX] - 01 04 02 FF FF B8 80
4/26/2009 13:30:01.495 [TX] - 02 04 02 27 10 E7 0C
4/26/2009 13:30:11.596 [TX] - 03 04 02 00 00 C0 F0
4/26/2009 13:30:27.075 [TX] - 04 04 02 04 00 77 F0

 Playback TX with fixed 500 milliseconds interval

123

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

4/26/2009 13:30:27.095 [TX] - 01 04 00 00 00 01 31 CA
4/26/2009 13:30:27.595 [TX] - 02 04 00 00 00 01 31 F9
4/26/2009 13:30:28.096 [TX] - 03 04 00 00 00 01 30 28
4/26/2009 13:30:28.596 [TX] - 04 04 00 00 00 01 31 9F

10.2.2.14 SaveProgramOptions

Saves the current Docklight program options (everything that can be adjusted in the
Options dialog) and the active communication window mode (ASCII, HEX, Decimal or
Binary) to a file.

Return Value

Void

Syntax

DL.SaveProgramOptions filePathName

The SaveProgramOptions method syntax has these parts:

Part Description

filePathName Required. String containing the file path (directory and file name) of
the Docklight settings file create. If no directory is specified,
Docklight uses the current working directory. If filePathName is an
empty string, a file dialog will be displayed to choose a file.

Remarks

A file created with SaveProgramOptions can be loaded using LoadProgramOptions.
SaveProgramOptions creates XML files (.xml file extension).

SaveProgramOptions and LoadProgramOptions are very useful to ensure that
Docklight uses specific display and time stamp settings for executing your Docklight
script. This is great for automated testing tools that are intended for other users, who
are not familiar with Docklight. You can prepare the appropriate display representation
(e.g. HEX mode only) and make sure other users will receive the same display output
as you did.

NOTE: Communication needs to be stopped (see StopCommunication) before using
SaveProgramOptions or LoadProgramOptions.

Example

' Example SaveProgramOptions
DL.StopCommunication
DL.SaveProgramOptions "myFavoriteSettings"
DL.Quit

Now make some changes in the Docklight Options, or change the communication
window, e.g. by selecting the Decimal tab. Then run the following script:

' Example LoadProgramOptions
DL.LoadProgramOptions "myFavoriteSettings"

Docklight will now revert to the display settings used before.

124

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.2.2.15 SetChannelSettings

Change the current communication channel settings: provide a new COM port number
or TCP/IP address, or change the serial port settings (baud rate, parity settings, ...).

Serial port settings can be changed on-the-fly, while the communication channel is
open. For other changes, e.g. the COM port number itself, StopCommunication must be
called before using SetChannelSettings.

NOTE:

Return Value

Boolean

Syntax

result = DL.SetChannelSettings(newSettings [, channelNo] [, dontTest])

The SetChannelSettings method syntax has these parts:

Part Description

newSettings Required. String with the new communication channel and/or the
serial settings. See below for detailed specification

channelNo Optional. Integer value that specifies the communication channel if
Communication Mode: Monitoring is used. Default value is 1 (Channel
1).

dontTest Optional. Boolean value. If dontTest is set to True,
SetChannelSettings does not open and close the communication
channel for testing purposes. See the "Remarks" section below.
Default value is False (channel is tested to determine return value).

The newSettings argument accepts the following values:

Value Description

"COMxxx" Select new serial communication port, e.g. "COM7"

"RemoteHost:RemotePort" Make this channel a TCP client and connect to the
specified IP address and TCP port number, e.g.
"192.0.0.1:3001" (see Projects Settings)

"SERVER:LocalPort" Make this channel a TCP server, accepting
connections on the specified TCP port, e.g.
"SERVER:3001" (see Projects Settings)

"UDP:RemoteHost:Port" Makes this channel a UDP peer, transmitting data to
RemoteHost:Port and listening to the local Port (see
Projects Settings)

"USBHID:vendorId:productId" USB HID input / output report access (see Projects
Settings).

"PIPE:myNamedPipe" Client connection to a Named Pipe with read/write
access (see Projects Settings).

"COMxxx:BaudRate,Parity,
DataBits,StopBits"

Select new serial port and serial communication
settings
Parity can be NONE, EVEN, ODD, MARK, SPACE.
Example: "COM18:9600,EVEN,8,1"

"BaudRat,Parity,DataBits,
StopBits"

Changing the serial settings without knowing/changing
the current serial port. Example: "38400,NONE,8,1"

"BaudRat,Parity,DataBits,
StopBits,FlowControl
,ParityErrorChar"

Extended syntax to additionally change the hardware
flow control options:

125

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

FlowControl can be OFF, RTSCTS, XONXOFF,
RTSSEND
ParityErrorChar: The decimal ASCII code for the
Parity Error Character (see Projects Settings). Default
value is 63.
Example: "9600,NONE,8,2,RTSCTS,35"

">" Find the next serial COM port available on this PC. If
the currently selected port is COM1,
SetChannelSettings will start searching at COM2.

Remarks

For most applications it is not necessary to use SetChannelSettings or its companion,
GetChannelSettings. Communication parameters can be chosen in the Project Settings
dialog, and stored in the Docklight project file (see Saving and Loading Your Project
Data and the Open Project method).

The SetChannelSettings method is intended for advanced Docklight Scripting
applications, where control of the communication channel settings during script runtime
is required. It allows you to create scripts that access different COM ports (see example
below), or walk through a list of IP addresses.

SetChannelSettings method will produce an error, if an illegal value is passed with
newSettings.

If the newSettings argument is valid (and the dontTest flag is not set), the
communication channel will be opened and closed again immediately for a test.

If dontTest is True, SetChannelSettings will not open/close the channel for testing,
and return always True. This is useful in networking applications, where additional
connect/disconnect attempts might confuse the other host/device. Problems have been
experienced for example with Telnet server applications.

The return value of SetChannelSettings is True, if the channel could be successfully
opened (or the new settings are ok and dontTest is true).
The return value is False, if the settings are invalid or an error occurred while trying to
access the port (e.g. the COM port already in use, or the Firewall denied the TCP/IP
access).

NOTE: Modifying the FlowControl parameter when Project Settings: Flow Control is
other than "Off" can result in undefined behavior.

See also GetChannelSettings and GetChannelStatus.

Example

' Example SetChannelSettings / GetChannelSettings
' (requires Docklight in Send/Receive mode)

DL.ClearCommWindows

DL.AddComment "Searching for first COM port available on this
PC..."
portAvailable = DL.SetChannelSettings("COM1:9600,NONE,8,1")
While Not portAvailable
 oldPort = DL.GetChannelSettings()
 ' try next COM port
 portAvailable = DL.SetChannelSettings(">")
 newPort = DL.GetChannelSettings()

126

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 ' tried out already all COM ports on this PC?
 If (oldPort = newPort) Then
 DL.AddComment "No COM port available"
 DL.Quit
 End If
Wend
DL.AddComment "Using COM port " & DL.GetChannelSettings()

' Try a few different baud rates
baudRatesStr = "9600,14400,57600,115200"
baudRatesArray = Split(baudRatesStr, ",")
For i = 0 To UBound(baudRatesArray)
 ' Tweak the serial port settings
 DL.SetChannelSettings(baudRatesArray(i) + ",NONE,8,1")
 DL.AddComment
 DL.AddComment
 DL.AddComment "Testing with settings " &
DL.GetChannelSettings()
 ' Send a modem test command and allow some waiting time for
the answer
 DL.StartCommunication
 DL.SendSequence "", "ATI3" + Chr(13) + Chr(10)
 DL.Pause 200
 DL.StopCommunication
Next

After running the script on a computer with a built-in modem on COM3, the Docklight
communication window could look like this:

 Searching for first COM port available on this PC...
 Using COM port COM3:9600,NONE,8,1

 Testing with settings COM3:9600,NONE,8,1

28.01.2008 16:28:36.26 [TX] - ATI3<CR><LF>

28.01.2008 16:28:36.26 [RX] - ATI3<CR>
<CR><LF>
Agere SoftModem Version 2.1.46<CR><LF>
<CR><LF>
OK<CR><LF>

 Testing with settings COM3:14400,NONE,8,1

28.01.2008 16:28:37.46 [TX] - ATI3<CR><LF>

28.01.2008 16:28:37.46 [RX] - ATI3<CR>
<CR><LF>
Agere SoftModem Version 2.1.46<CR><LF>
<CR><LF>
OK<CR><LF>

 Testing with settings COM3:57600,NONE,8,1

28.01.2008 16:28:38.60 [TX] - ATI3<CR><LF>

127

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

28.01.2008 16:28:38.60 [RX] - ATI3<CR>
<CR><LF>
Agere SoftModem Version 2.1.46<CR><LF>
<CR><LF>
OK<CR><LF>

 Testing with settings COM3:115200,NONE,8,1

28.01.2008 16:28:39.73 [TX] - ATI3<CR><LF>

28.01.2008 16:28:39.73 [RX] - ATI3<CR>
<CR><LF>
Agere SoftModem Version 2.1.46<CR><LF>
<CR><LF>
OK<CR><LF>

10.2.2.16 SetContentsFilter

Use a different Contents Filter setting than the one defined in the Project Settings -
Communication Filter dialog.

Return Value

Void

Syntax

DL.SetContentsFilter newContentsFilter

The SetContentsFilter method syntax has these parts:

Part Description

newContentsFilt
er

Required. Integer value to select the new filter:
0 = Show all original communication data (channel 1 and channel 2)
1 = Show channel 1 or [TX] data only
2 = Show channel 2 or [RX] data only
3 = Hide all original serial data, show additional comments only

Remarks

After the script execution has ended, the Contents Filter is set to the original project
setting defined in Project Settings - Communication Filter.

Example

' Requires the Docklight basic example project "PingPong" and a
loopback on the chosen
' communication channel
DL.OpenProject "PingPong"
DL.ClearCommWindows
DL.SendSequence "Ping"
DL.Pause 50
DL.AddComment vbCrLf + "SetContentsFilter(1) " :
DL.SetContentsFilter(1)
DL.Pause 50

128

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.AddComment vbCrLf + "SetContentsFilter(2) " :
DL.SetContentsFilter(2)
DL.Pause 50
DL.AddComment vbCrLf + "SetContentsFilter(3) " :
DL.SetContentsFilter(3)
DL.Pause 50

After running the script, the Docklight communication window could look like this:

7/30/2012 17:42:31.322 [TX] - 2D 2D 2D 2D 6F 20 50 69 6E 67
7/30/2012 17:42:31.326 [RX] - 2D 2D 2D 2D 6F 20 50 69 6E 67
 "Ping" received
7/30/2012 17:42:31.350 [TX] - 6F 2D 2D 2D 2D 20 50 6F 6E 67
7/30/2012 17:42:31.352 [RX] - 6F 2D 2D 2D 2D 20 50 6F 6E 67
 "Pong" received
7/30/2012 17:42:31.499 [TX] - 2D 2D 2D 2D 6F 20 50 69 6E 67
SetContentsFilter(1)
 "Ping" received
7/30/2012 17:42:31.523 [TX] - 6F 2D 2D 2D 2D 20 50 6F 6E 67
 "Pong" received
7/30/2012 17:42:31.547 [TX] - 2D 2D 2D 2D 6F 20 50 69 6E 67
 "Ping" received
7/30/2012 17:42:31.572 [TX] - 6F 2D 2D 2D 2D 20 50 6F 6E 67
 "Pong" received
7/30/2012 17:42:31.594 [TX] - 2D 2D 2D 2D 6F 20 50 69 6E 67
 "Ping" received
7/30/2012 17:42:31.619 [TX] - 6F 2D 2D 2D 2D 20 50 6F 6E 67
SetContentsFilter(2)

7/30/2012 17:42:31.621 [RX] - 6F 2D 2D 2D 2D 20 50 6F 6E 67
 "Pong" received 2D 2D 2D 2D 6F 20 50 69 6E 67 "Ping" received
6F 2D 2D 2D 2D 20 50 6F 6E 67 "Pong" received 2D 2D 2D 2D 6F
20 50 69 6E 67 "Ping" received 6F 2D 2D 2D 2D 20 50 6F 6E 67
 "Pong" received
SetContentsFilter(3)
 "Ping" received "Pong" received "Ping" received "Pong"
received "Ping" received "Pong" received

10.2.2.17 SetHandshakeSignals

Sets the RTS and DTR handshake signals. Only allowed when Flow Control: Manual is
used.

Syntax

DL.SetHandshakeSignals rts, dtr

The SetHandshakeSignals method syntax has these parts:

Part Description

rts Required. Boolean value to set RTS = High (True) or RTS = Low
(False)

dtr Required. Boolean value to set DTR = High (True) or DTR = Low
(False)

Remarks

See also the GetHandshakeSignals function for reading the current state of the
handshake signals.

129

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

SetHandshakeSignals can be used before opening the communication channel to
ensure a certain state of the RTS and DTR lines on initialization.

Example

' Example SetHandshakeSignals
DL.SetHandshakeSignals true, false
DL.StartCommunication
DL.Pause 1000
DL.SetHandshakeSignals false, true
DL.Pause 1000

10.2.2.18 SetUserOutput

Create an additional user output tab in the documentation/script area of the Docklight
main window. Add plain text or formatted RTF output to provide visual user feedback
and/or menu-style interaction (using GetKeyState).

Syntax

DL.SetUserOutput text [, rtfFormat] [, append] [, readFromFile]

The SetUserOutput method syntax has these parts:

Part Description

text Required. Your output to show or add.

If text is an empty string, the output tab is removed again from the
Docklight main window .

rtfFormat Optional Boolean value.
False (Default) = text is plain text
True = text is a valid RTF document, e.g. the contents of a RTF
document file.

append Optional Boolean value.
True (Default) = add text to the already existing content.
False = replace the existing output content with text .

readFromFile Optional Boolean value.
False (Default) = text contains the actual text or RTF document
True = text is a file and its contents should be displayed.

NOTE: if a file does not exist or cannot be loaded, SetUserOutput
uses an empty string instead and does not indicate an error.

Remarks

SetUserOutput can help you to create a customized user output or offer menu-style
user interactions. An example could be choosing from different predefined tests in an
automated device testing rig.

See the SetUserOutput_Example.pts example script in the
ScriptSamples\Extras\SetUserOutput_Example folder for the different possibilities of
loading / adding formatted text.

Example

DL.SetUserOutput "" ' clear output
DL.Pause 1000

130

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.SetUserOutput "A good old 'Hello World!'"
DL.Pause 5000
DL.SetUserOutput "... more text ..."
DL.Pause 5000

' You can create your RTF document bits with Windows Wordpad
and
' open the resulting .rtf file with Windows Notepad to see the
RTF code.
rtfExample =
"{\rtf1\ansi\ansicpg1252\deff0{\fonttbl{\f0\fnil\fcharset0
Harlow Solid Italic;}}{\colortbl ;\red75\green172\blue198;}
\cf1\f0\fs32 A Curly Hello!\par}"
DL.SetUserOutput "... something more colorful ..."
DL.SetUserOutput rtfExample, True

DL.Pause 5000
DL.SetUserOutput "The End. Removing output tab soon...", False,
 False
DL.Pause 5000
DL.SetUserOutput ""

Example 2 (read RTF file and display)

DL.SetUserOutput "C:\mytext.rtf", True, False, True

10.2.2.19 SetWindowLayout

Controls the Docklight main window appearance, similar to the menu Tools >
Minimize/Restore... and the F12 Hot Keys.

Syntax

DL.SetWindowLayout [layout]

The SetWindowLayout method syntax has these parts:

Part Description

layout Optional String argument. A combination of the following letters:
S - sequence area visible
D - doc/script area visible

Default value is "SD" - show both the sequence lists and the doc/script
area.

Remarks

SetWindowLayout is useful when you have a ready-to-use script/project and the end
user should not be distracted by details of your Docklight project and script definitions.
By hiding some areas of the Docklight main window, you can put the focus on the
Communication Window output, or a SetUserOutput display you created.

Example

' Example SetWindowLayout
' show communication window only. No doc/script area, no
Send/Receive Sequence area

131

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.SetWindowLayout ""
DL.Pause 4000
' show communication window and Send/Receive sequence lists,
but no doc/script area
DL.SetWindowLayout "S"
DL.Pause 4000
' show everything (default, same as <layout> = "SD")
DL.SetWindowLayout

10.2.2.20 ShellRun

Starts an external application or executes a Windows Shell operation.

Return Value

Integer

Syntax 1

result = DL.ShellRun(operation, file [, parameters] [, directory] [, showCmd])

The ShellRun method syntax 1 has these parts:

Part Description

operation Required. String which specifies the type of action to be performed,
corresponding to the Windows ShellExecute lpOperation parameter.
Commonly used values are:
"open"- opens a file or a folder
"print"- prints a file
"edit" - launches an editor and opens the file for editing
See the Windows ShellExecute documentation for more values and
documentation.

file Required. String with the path to the file on which to execute
operation.

parameters Optional. String value. If file is an executable, command-line
arguments can be passed here.

directory Optional. String value. Defines the working directory for the action. If
not used, the current Docklight working directory is used.

showCmd Optional Integer value. Specifies the application appearance,
corresponding to the Windows ShellExecute nShowCmd parameter.
Default value is:
10 - SW_SHOWDEFAULT
other common values are:
0 - SW_HIDE
1 - SW_SHOWNORMAL
2 - SW_SHOWMINIMIZED
3 - SW_SHOWMAXIMIZED

Remarks (Syntax 1)

result contains the return value of Windows ShellExecute.

result is > 32 if successful.

See the example below for a definition of relevant error constants for result.

Syntax 2

132

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

result = DL.ShellRun("wait<timeout>", [, file] [, parameters] [, directory] [,
showCmd])

The ShellRun method syntax 1 has these parts:

Part Description

"wait<timeout>" Instead of operation as in Syntax 1, use:
"wait" - start an external application and wait for it to quit
or
"wait<timeout>", e.g. "wait60000" - start an external application and
wait for it to quit, or for the specified timeout in milliseconds to expire.

file
parameters
directory
showCmd

same as in Syntax 1

Remarks (Syntax 2):

The "wait<timeout>" starts and monitor an external application via Windows
ShellExecuteEx, similar to the "open" command of Syntax 1.

The return values in Syntax 2 are different from Syntax 1:

result Description

0 successful

-1 error starting the application

-2 timeout

Example

' Example ShellRun
'
' Here is a list of error codes, according to the original C
header file shellapi.h from Windows Kit 8.1:
' regular WinExec() codes */
const SE_ERR_FNF = 2 ' file not found
const SE_ERR_PNF = 3 ' path not found
const SE_ERR_ACCESSDENIED = 5 ' access denied
const SE_ERR_OOM = 8 ' out of memory
const SE_ERR_DLLNOTFOUND = 32
' error values for ShellExecute() beyond the regular WinExec()
codes
const SE_ERR_SHARE = 26
const SE_ERR_ASSOCINCOMPLETE = 27
const SE_ERR_DDETIMEOUT = 28
const SE_ERR_DDEFAIL = 29
const SE_ERR_DDEBUSY = 30
const SE_ERR_NOASSOC = 31

' Example for Syntax 2
DL.AddComment "Open notepad and wait for application end. After
max 60 sec timeout close forcefully:"
DL.AddComment "DL.AddComment DL.ShellRun(" & Chr(34) &
"wait60000" & Chr(34) & ", " & Chr(34) & "notepad.exe" &
Chr(34) & ", " & Chr(34) & "test.txt" & Chr(34) & ")"
DL.AddComment "returns = " & DL.ShellRun("wait60000",
"notepad.exe", "test.txt")

133

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.Pause 1000
' Examples for Syntax 1
DL.AddComment "Ask Windows to open the same file with the
default edit application for .txt files, continue immediately:"
DL.AddComment "DL.ShellRun(" & Chr(34) & "edit" & Chr(34) & ",
" & Chr(34) & "test.txt" & Chr(34) & ")"
DL.AddComment "returns = " & DL.ShellRun("edit", "test.txt")
DL.Pause 3000
DL.AddComment "Open the Docklight web site in the default
browser:"
DL.AddComment "DL.ShellRun(" & Chr(34) & "open" & Chr(34) & ",
" & Chr(34) & "https://docklight.de" & Chr(34) & ")"
DL.AddComment "returns = " & DL.ShellRun("open",
"https://docklight.de")
DL.Pause 3000
DL.AddComment "Open Windows Device Manager:"
DL.AddComment "DL.ShellRun(" & Chr(34) & "open" & Chr(34) & ",
" & Chr(34) & "devmgmt.msc" & Chr(34) & ")"
DL.AddComment "returns = " & DL.ShellRun("open", "devmgmt.msc")
DL.Pause 1000
DL.AddComment "done"

10.2.2.21 UploadFile

Opens an existing file and sends out its contents. Starts the communication, if not
already running (see StartCommunication).

Return Value

Void

Syntax

DL.UploadFile filePathName [, representation]

The UploadFile method syntax has these parts:

Part Description

filePathName Required. String containing the file path (directory and file name) of
the file to send. If no directory is specified, Docklight uses the
current working directory. If filePathName is an empty string, a file
dialog will be displayed to choose a file.

representation Optional. String value to define the format of the filePathName file.
"A" = ASCII (default):
filePathName is a text file that is sent out directly, no further parsing.
"H" = HEX:
filePathName contains HEX sequence data, e.g. 5F 54 65 73 74 ...
"D" = Decimal:
filePathName contains Decimal sequence data, e.g. 095 084 101
115 ...
"B" = Binary:
filePathName contains Binary sequence data, e.g. 01011111
01010100 ...
"R" = Raw Data:
filePathName is a binary file that needs that is sent out unmodified.

134

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Remarks

File upload is only possible in Communication Mode Send/Receive.

If filePathName does not exist, Docklight reports an error and the script execution is
stopped.

The "A" ASCII default representation allows sending text files without further
modification. For raw binary data files that need to be sent unmodified, use the
"R" (Raw Data) option. It is not to be confused with the "B" (Binary) representation used
by Docklight to display data with 0's and 1's only.

You can use the UploadFile method to transfer the contents of a Docklight Log file.
Please make sure that your log file is in plain text mode (see Log File Settings), and the
file contains the raw data only, with no additional comments and no date/time stamps
(see Options).

The UploadFile method does not support specific compiler output file formats, such as
"Intel HEX File". If you have any specific requirements, please contact our e-mail
support.

NOTE: The data is sent in blocks of max. 512 bytes. If you send a Send Sequence
manually during a file upload, the sequence will be sent between one of these blocks
and will corrupt the data transmission.

Example

' Example Upload File

' Send a text file
DL.UploadFile "helloworld.txt", "A"

' Send raw binary data file directly
DL.UploadFile "test.dat", "R"

' Parse and send a HEX data file
DL.UploadFile "hexfile.txt", "H"

10.2.3 Properties

10.2.3.1 NoOfSendSequences

Returns the number of Send Sequences defined in the current Docklight project.

Return Value

Integer

Syntax

result = DL.NoOfSendSequences

Remarks

The NoOfSendSequences property is very useful to create loop structures that make
use of all Send Sequences available. See the example below.

Example

135

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

' Example NoOfSendSequences

' Send out all Send Sequences defined, with a 1 seconds delay
' between the individual sequences
For i = 0 To (DL.NoOfSendSequences - 1)
 DL.SendSequence i
 DL.Pause 1000
Next

10.2.3.2 NoOfReceiveSequences

Returns the number of Receive Sequences defined in the current Docklight project.

Return Value

Integer

Syntax

result = DL.NoOfReceiveSequences

Remarks

See NoOfSendSequences.

10.3 OnSend / OnReceive Event Procedures

Docklight Scripting supports two dedicated procedures that are called by the Docklight
Scripting engine before transmitting a new Send Sequence or after detecting a Receive
Sequence.

Procedure Definition Description

Sub DL_OnSend()
... my script code ...
End Sub

DL_OnSend() is called after a new 'send' operation has
been triggered (manual send or DL.SendSequence).
Special manipulation functions are available to read out and
modify the data before it is actually transmitted. See Send
Sequence Data Manipulation.

Sub DL_OnReceive()
... my script code ...
End Sub

DL_OnReceive() is called after a Receive Sequence has
been detected. Special manipulation functions are available
to read out and further process the data received. See
Evaluating Receive Sequence Data.

The procedures can be defined anywhere in the script code at module-level (not within
a class). See Send Sequence Data Manipulation for an example.

NOTE: The DL_OnSend() and DL_OnReceive() code is only executed while the script
is running. Sending a Send Sequence does not automatically execute the related
DL_OnSend() code. The script must be started manually using the menu Scripting >

 Run Script. Any error during script execution will stop the script and prevent that
further DL_OnSend() / DL_OnReceive() procedure calls are made.

NOTE: DL_OnSend() and DL_OnReceive() events are queued and can be processed
at a later point. See Timing and Program Flow for more information.

TIP: If your script consist only of the DL_OnSend() and DL_OnReceive() procedures
and nothing else, use a simple endless loop at module-level to prevent the script from
terminating immediately. See the Send Sequence Data Manipulation example.

136

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.3.1 Sub DL_OnSend() - Send Sequence Data Manipulation

To allow additional calculations and algorithms (e.g. checksums) on Send Sequence
data, the following procedure can be defined in a Docklight script:

Sub DL_OnSend()
... my script code ...
End Sub

Before sending out a new Send Sequence, the DL_OnSend() procedure is called by
the Docklight script engine. Inside the DL_OnSend() procedure, the following functions
are available to read and manipulate the current sequence data:

Function Description

result = DL.OnSend_GetSize() Returns the send data size / number of
characters

result = DL.OnSend_GetName() Returns the name of the Send Sequence to be
transmitted.
If this is a custom data sequence created by a
DL.SendSequence command, the return value is
an empty string ("").

result = DL.OnSend_GetIndex() Returns its index within the Send Sequence list.
If this is a custom data sequence created by a
DL.SendSequence command, the return value is
-1.

result =
 DL.OnSend_GetData([representa
tion])

Syntax 2:
result =
DL.OnSend_GetData([representatio
n] [, start] [, length])

Returns a string containing the actual send data.
representation specifies the format of result: "A"
= ASCII (default), "H" = HEX, "D" = Decimal or
"B" = Binary.
The data returned does not contain any
wildcards. All wildcard positions have already
been replaced by actual characters. NOTE: If
the original Send Sequence contains '#'
wildcards (zero or one character), the length of
the DL.OnSend_GetData() sequence can be
shorter than the original sequence with
wildcards.

Syntax 2:
Returns a string containing a specified number
of characters from the data received.
start: range: 1 .. DL.OnSend_GetSize(), or -1
= start at last character, -2 = start at second last
character, ... Default value is 1.
length: number of characters, or -1 = until last
character,
-2 = until second last character,
Default value is -1.

DL.OnSend_SetData newData
 [, representation]

Replaces the data to be transmitted with the data
provided in the newData string. representation
specifies the format of newData "A" = ASCII
(default), "H" = HEX, "D" = Decimal or "B" =
Binary.
After exiting the DL_OnSend() procedure,
Docklight will transmit newData, regardless of

137

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

what the original Send Sequence looked like.
The newData length can be different from the
original Send Sequence length.
NOTE: If newData is an empty string, the
transmission of the original Send Sequence is
effectively suppressed.

DL.OnSend_Poke charNo, value Set the character at position charNo to value.
value is the new character as an integer number
from 0..255. See also DL.OnSend_Peek(...)

result = DL.OnSend_Peek(charNo)

Syntax 2:
result = DL.OnSend_Peek(charNo,
representation)

Returns one character of the send data as an
integer value from 0..255. charNo is the position
within the send data. Valid charNo range: 1 ..
DL.OnSend_GetSize(),
or -1 = start at last character, -2 = start at
second last character, ...

Syntax 2:
Returns a string instead of an integer value.
representation specifies the format:
"A" = ASCII, "H" = HEX, "D" = Decimal or "B" =
Binary.

Remarks

Using the DL.OnSend_GetSize(), DL.OnSend_Peek(..) and DL.OnSend_Poke
functions, checksum calculations and other algorithms can be easily implemented. See
the example below.

The DL_OnSend() procedure is only executed while the script is running. While
executing the DL_OnSend() code, no further communication processing and display
updates are performed. To avoid performance and timing problems, keep the execution
time low. Avoid nested loops for example, and do not perform time-consuming
calculations.

See Timing and Program Flow for some insight on how Docklight handles send data
events and executes the DL_OnSend() code section.

Example

' Example DL_OnSend() event code

' Predefined Send Sequences
' (0) Test: TestX<CR><NUL>

' Endless loop to prevent the script from terminating
immediately
Do
 DL.Pause 1 ' (the pause reduces CPU load while idle)
Loop

Sub DL_OnSend()
 ' Simple checksum: Last byte of sequence
 ' is a checksum on all previous bytes, mod 256
 seqSize = DL.OnSend_GetSize()
 ' we need at least a three-byte sequence

138

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 If seqSize > 2 Then
 ' instead of the "X" after Test, put a random character
 DL.OnSend_Poke seqSize - 2, 65 + Rnd * 25
 ' calculate a simple checksum on the new sequence

 chksumHex = DL.CalcChecksum("MOD256",
DL.OnSend_GetData("H"), "H", 1, seqSize -1)
 ' Overwrite the last character of the Send Sequence
with the actual checksum value
 DL.OnSend_Poke seqSize, CInt("&h" + chkSumHex)
 ' Using the Peek function for additional documentation

 DL.AddComment vbCrLf & vbCrLf
 DL.AddComment "Checksum on", False, False
 For i = 1 To seqSize - 1
 DL.AddComment " " & DL.OnSend_Peek(i, "H"), False,
False
 Next
 DL.AddComment " is " & DL.OnSend_Peek(seqSize, "H") &
"(Hex), " & DL.OnSend_Peek(seqSize, "D") & "(Decimal)"
 End If
End Sub

After starting the script and manually sending the "Test" sequence twice, the ASCII
communication window of Docklight could display the following output:

Checksum on 54 65 73 74 53 0D is 00(Hex), 000(Decimal)

23.06.2015 11:28:31.695 [TX] - 54 65 73 74 53 0D 00

Checksum on 54 65 73 74 4E 0D is FB(Hex), 251(Decimal)

23.06.2015 11:28:32.568 [TX] - 54 65 73 74 4E 0D FB

NOTE: Calculating and Validating Checksums and the Modbus protocol example
describe how to calculate and validate common CRCs and other checksums without
DL_OnSend() / DL_OnReceive() code. This processing happens before the sequence
data is passed to the DL_OnSend() procedure. But if you want to modify your Send
Sequence data before sending and require a checksum on the modified data, the above
example is the correct solution.

10.3.2 Sub DL_OnReceive() - Evaluating Receive Sequence Data

To analyze the Receive Sequence data (e.g. check the actual values received for a
wildcard area) or perform additional tasks after receiving the sequence, the following
procedure can be defined in a Docklight script:

Sub DL_OnReceive()
... my script code ...
End Sub

After detecting a new Receive Sequence and performing the predefined Actions (add
comment, send a sequence, ...), the DL_OnReceive() procedure is called by the
Docklight script engine. Inside the DL_OnReceive() procedure, the following functions
are available to read out the Receive Sequence data:

Function Description

result = DL.OnReceive_GetSize() Returns the received data size / number of
characters

139

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

result = DL.OnReceive_GetName() Returns the name of the corresponding Receive
Sequence.

result = DL.OnReceive_GetIndex() Returns its index within the Receive Sequence
list

result =
DL.OnReceive_GetData([represent
ation])

Syntax 2:
result =
DL.OnReceive_GetData([represent
ation] [, start] [, length])

Returns a string containing the actual data
received. representation specifies the
representation of result: "A" = ASCII (default),
"H" = HEX, "D" = Decimal or "B" = Binary.
The data returned does not contain any
wildcards. At wildcard positions, the actual
characters received are returned.
NOTE: If the original Receive Sequence
contains '#' wildcards (zero or one character),
the length of the DL.OnReceive _GetData()
sequence can be shorter than the original
sequence with wildcards.

Syntax 2:
Returns a string containing a specified number
of characters from the data received.
start: range: 1 .. DL.OnReceive_GetSize(), or -
1 = start at last character, -2 = start at second
last character, ... Default value is 1.

length: number of characters, or -1 = until last
character,
-2 = until second last character,
Default value is -1.

result =
DL.OnReceive_GetChannel()

Returns the communication channel number on
which this sequence has been detected. In
Communication Mode "Monitoring", the return
value is 1 or 2. In Communication Mode
Send/Receive, the return value is 2 always (RX
channel).

result =
DL.OnReceive_Peek(charNo)

Syntax 2:
result =
DL.OnReceive_Peek(charNo,
representation)

Returns one character of the received data as
an integer value from 0..255
charNo is the position within the received data.
Valid charNo range: 1 ..
DL.OnReceive_GetSize(), or -1 = start at last
character, -2 = start at second last character, ...

Syntax 2:
Returns a string instead of an integer value.
representation specifies the format:
"A" = ASCII, "H" = HEX, "D" = Decimal or "B" =
Binary.

myDateTime =
DL.OnReceive_GetDateTime()

milliseconds =
DL.OnReceive_GetMilliseconds()

These functions return the actual Docklight
date/time stamp when this Receive Sequence
was triggered. The result is stored in two
separate VBScript standard data types:
myDateTime: VBScript Date value with the
Date/Time in 1 seconds resolution
milliseconds: Integer value with the
corresponding milliseconds information from
0..999

140

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

Remarks

The DL.OnReceive_GetData() method is a good way to analyze the actual data
received when you are using ASCII protocols with printing characters only. If you
require the HEX or decimal value of individual characters, you may use the
DL.OnReceive_Peek(..) function as a convenient alternative. See the DL_OnSend()
event procedure for a related example.

The DL_OnReceive() procedure is only executed while the script is running. While
executing the DL_OnReceive() code, no further communication processing and display
updates are performed. To avoid performance and timing problems, keep the execution
time low. Avoid nested loops for example, and do not perform time-consuming
calculations.

DL_OnReceive() procedures are not executed while a Pause or a WaitForSequence
method is blocking the program flow. If a Receive Sequence is detected, the
DL_OnReceive() call is queued and executed after Pause (or WaitForSequence)
returns. See Example 2 below for a workaround to this problem.

See also Timing and Program Flow for some insight on how Docklight handles receive
data events and executes the DL_OnReceive() code section.

Example

' Example DL_OnReceive() event code
'
' Predefined Send Sequence
' (0) Send Value:
' VALUE=<?><?><CR><LF>
'
' Predefined Receive Sequence
' (0) Value Received:
' VALUE=<?><?><CR><LF>
'
' Run this test on a COM port with a loopback connector
' (TX connected to RX of the same port).

finished = False
DL.ClearCommWindows
Do
 DL.Pause 1 ' (the pause reduces CPU load while idle)
Loop Until finished

Sub DL_OnReceive()
 If DL.OnReceive_GetName() = "Value Received" Then

 DL.AddComment "Value received = " &
DL.OnReceive_GetData("A", 7, -3)
 ' Read the value from the receive data, but only the
changing "value" part
 myValue = Mid(DL.OnReceive_GetData(), 7, 2)
 ' Ensure this is a numeric value
 If IsNumeric(myValue) Then
 ' increase
 myValue = myValue + 1
 If myValue < 100 Then
 ' If the value is still below 100, send it out
again
 newValueStr = CStr(myValue)

141

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 DL.SendSequence "Send Value", newValueStr
 Else
 DL.AddComment "VALUE=99, stopping..."
 finished = True
 End If
 End If
 End If
End Sub

After starting the script and manually sending out a "Send Value" sequence with
parameter value "95", the Communication Window could look like this:

7/29/2012 15:43:43.823 [TX] - VALUE=95

7/29/2012 15:43:43.826 [RX] - VALUE=95
 Value received = 95

7/29/2012 15:43:43.879 [TX] - VALUE=96

7/29/2012 15:43:43.880 [RX] - VALUE=96
 Value received = 96

7/29/2012 15:43:43.926 [TX] - VALUE=97

7/29/2012 15:43:43.927 [RX] - VALUE=97
 Value received = 97

7/29/2012 15:43:43.977 [TX] - VALUE=98

7/29/2012 15:43:43.978 [RX] - VALUE=98
 Value received = 98

7/29/2012 15:43:44.025 [TX] - VALUE=99

7/29/2012 15:43:44.026 [RX] - VALUE=99
 Value received = 99
 VALUE=99, stopping...

Example 2

' Example using DL_OnReceive() in code with Pause statements

' Predefined Send Sequence
' (0) Hello:
' Hello<CR><LF>
'
' Predefined Receive Sequence
' (0) Hello:
' Hello<CR><LF>
'
' Run this test on a COM port with a loopback connector
' (TX connected to RX of the same port).

DL.ClearCommWindows
' Get the communication started
started = True
DL.SendSequence "Hello"

142

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

' Wait for about 1 second, but make sure that the
DL_OnReceive() events
' are processed meanwhile
pauseWithEvents 1000
' Stop sending and wait until all data came back properly
started = False
DL.Pause 20
' Data throughput?
DL.AddComment
DL.AddComment "Number of 'Hello' sequences detected: " &
DL.GetReceiveCounter("Hello")

Sub DL_OnReceive()
 If started Then
 myDate = DL.OnReceive_GetDateTime()
 msec = DL.OnReceive_GetMilliseconds()
 DL.AddComment " receive timestamp = " &
DL.GetDocklightTimeStamp(myDate, msec)
 ' Send out the same sequence that has just been
received

 DL.SendSequence DL.OnReceive_GetIndex()
 End If
End Sub

Sub pauseWithEvents(milliseconds)
 ' Unlike the DL.Pause command, this function allows
DL_OnReceive()
 ' statements to be processed while waiting
 startTime = Timer
 While (Timer - startTime) < milliseconds / 1000
 ' consider midnight 'jump' / reset of the Timer
variable
 If Timer < (startTime - 1) Then startTime = startTime -
86400
 DL.Pause 1
 Wend
End Sub

After starting the script, Docklight will keep sending and receiving the "Hello" sequence
for about 1 second. The total number of sequences sent and received depends on the
COM port settings (baud rate), PC speed and Docklight display settings. The
Communication Window could look like this:

8/1/2012 11:00:41.830 [TX] - Hello<CR><LF>

8/1/2012 11:00:41.834 [RX] - Hello<CR><LF>
 receive timestamp = 8/1/2012 11:00:41.834

8/1/2012 11:00:41.846 [TX] - Hello<CR><LF>

8/1/2012 11:00:41.849 [RX] - Hello<CR><LF>
 receive timestamp = 8/1/2012 11:00:41.849

8/1/2012 11:00:41.861 [TX] - Hello<CR><LF>

...

8/1/2012 11:00:42.825 [TX] - Hello<CR><LF>

143

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

8/1/2012 11:00:42.827 [RX] - Hello<CR><LF>
 receive timestamp = 8/1/2012 11:00:42.827

8/1/2012 11:00:42.839 [TX] - Hello<CR><LF>

8/1/2012 11:00:42.841 [RX] - Hello<CR><LF>
 receive timestamp = 8/1/2012 11:00:42.841

8/1/2012 11:00:42.852 [TX] - Hello<CR><LF>

8/1/2012 11:00:42.855 [RX] - Hello<CR><LF>

 Number of 'Hello' sequences detected: 70

Example 3

' Example using Sub DL_OnReceive() to wait for ANY sequence

found = False
foundName = ""
foundDate = Now
foundMSec = 0

Do
 DL.Pause 1 ' (the pause reduces CPU load while idle)
Loop Until found

DL.AddComment
DL.AddComment "Sequence received: " & foundName
DL.AddComment "Date/Time received: " &
DL.GetDocklightTimeStamp(foundDate, foundMSec)

Sub DL_OnReceive()
 If Not found Then
 found = True
 foundName = DL.OnReceive_GetName()
 foundDate = DL.OnReceive_GetDateTime()
 foundMSec = DL.OnReceive_GetMilliseconds()
 End If
End Sub

10.3.3 OnSend / OnReceive - Timing and Program Flow

Sub DL_OnSend() Timing

While a script is running, the DL_OnSend() event procedure is executed once for each
new Send Sequence. This applies to both, sequences sent by clicking the "Send"
button, and DL.SendSequence calls.

The DL_OnSend() event procedure is only entered after the current line of script code
has been executed. "Send" requests are buffered in the meantime.

The sequence diagram below shows the resulting timing behavior for an example with
one 'manual' send request (sequence1), and a second Send Sequence triggered by
script code (DL.SendSequence "sequence2").

144

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

NOTE: parameter wildcards and checksum fields are processed before the sequence
data enters the OnSend() queue.

Sub DL_OnReceive() Timing

Similar to DL_OnSend(), the DL_OnReceive() event procedure is not executed
immediately after Docklight has detected a new Receive Sequence match. Instead, the
events are buffered and executed after the current line of script code has been
executed.

The sequence diagram below shows the timing for an example where two different
Receive Sequences are detected in one go, and the DL_OnReceive() code is executed
at a later point.

NOTE: Checksum fields are processed in the Receive Data Handler, before the
sequence data enters the OnReceive() queue.

145

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.4 FileInput / FileOutput Objects for Reading and Writing Files

Docklight Scripting provides additional objects than can be used to read a file with text
or binary data, or create you own custom output file.

Object Name Description

FileInput Open existing files for sequential input, reading the file either
character-by-character or line-by-line. See Reading Files.

FileOutput Create a new file or append data to an existing file. Both
binary data as well as text files can be created. See Writing
Files.

10.4.1 FileInput - Reading Files

The global FileInput object provides an easy interface to process existing files, e.g. for
transmitting them on the serial line using additional checksums and formatting.

Methods and properties available for FileInput:

Method / Property Description

FileInput.OpenFile filePathName
[, rawData]

Opens an existing file for input.
rawData = False (default): Open as a text file.
rawData = True: Open as a raw binary data file.

FileInput.CloseFile Closes the file.

result = FileInput.GetLine() Returns a string with the next line of text. result
does not contain the line break characters (CR /
LF).
The GetLine method can only be used for text
files (rawData = False).

result = FileInput.GetByte() Returns the next byte.

result = FileInput.IsOpen Returns True if a file is open, False if not.

result = FileInput.EndOfFile Returns True, if all data has been read and the
end-of-file mark has been reached.

result = FileInput.Dialog([caption,] [,
defaultPath] [, fileFilter])

Shows a "File Open" dialog and return the
chosen file path, or an empty string, if aborted.
The default value for fileFilter is:

146

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

All Files (*.*)|*.*

result = FileInput.FileExists(filePath) Returns True, if filePath exists.

Remarks

When a file cannot be opened FileInput.OpenFile creates an error and script
execution stops. Use FileInput.FileExists to check if the file is available.

See also the FileOutput object.

Example

' FileInput / FileOutput example

DL.ClearCommWindows

' Create a simple text file
FileOutput.CreateFile "C:\test.txt"
FileOutput.WriteLine "Hello World!"
FileOutput.WriteLine "Goodbye, World!"
FileOutput.CloseFile

' Open the file and print its contents
path = FileInput.Dialog("Open a text for Docklight", "C:\",
"Text Files (*.txt)|*.txt")
If Len(path) > 0 Then
 DL.AddComment "Reading text file..."
 FileInput.OpenFile path
 Do Until FileInput.EndOfFile
 DL.AddComment FileInput.GetLine()
 Loop
 FileInput.CloseFile
End If

' Now try a raw data file
FileOutput.CreateFile "C:\test.bin", True
For i = 0 To 255
 FileOutput.WriteByte i
Next
FileOutput.CloseFile

' And load it...
DL.AddComment
DL.AddComment "Reading raw data file..."
FileInput.OpenFile "C:\test.bin", True
Do Until FileInput.EndOfFile
 DL.AddComment Right("0" + Hex(FileInput.GetByte()), 2) + "
", False, False
Loop
FileInput.CloseFile

The above script code produces the following output in the Docklight communication
window:

 Create text file C:\test.txt
 Reading text file: C:\test.txt
 Hello World!
 Goodbye, World!

147

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

 Create binary data file C:\test.txt

 Reading raw data file...
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 14
15 16 17 18 19 1A 1B 1C 1D 1E 1F 20 21 22 23 24 25 26 27 28 29
2A 2B 2C 2D 2E 2F 30 31 32 33 34 35 36 37 38 39 3A 3B 3C 3D 3E
3F 40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53
54 55 56 57 58 59 5A 5B 5C 5D 5E 5F 60 61 62 63 64 65 66 67 68
69 6A 6B 6C 6D 6E 6F 70 71 72 73 74 75 76 77 78 79 7A 7B 7C 7D
7E 7F 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 90 91 92
93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F A0 A1 A2 A3 A4 A5 A6 A7
A8 A9 AA AB AC AD AE AF B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC
BD BE BF C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF D0 D1
D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF E0 E1 E2 E3 E4 E5 E6
E7 E8 E9 EA EB EC ED EE EF F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB
FC FD FE FF

10.4.2 FileOutput - Writing Files

The global FileOutput object provides an easy interface to create files, e.g. for writing
custom data formats.

Methods and properties available for FileOutput:

Method / Property Description

FileOutput.CreateFile filePathName
[, rawData] [, appendData]

Create a new output file.
rawData = False (default): Open as a text file.
rawData = True: Open as a raw binary data file.
appendData = False (default): Overwrite file, if
exists.
appendData = True: Append data to an existing
file.

FileOutput.CloseFile Closes the file.

FileOutput.WriteLine data
[, appendLineBreak]

Write the string data to the file.
appendLineBreak = True (default): Append a
CR / LF line break after the data string
appendLineBreak = False: don't create a line
break
The WriteLine method can only be used for text
files (rawData = False).

FileOutput.WriteByte data Write the byte data to the file.

result = FileOutput.IsOpen Returns True if a file is open, False if not.

result = FileOutput.Dialog([caption]
[, defaultPath] [, fileFilter])

Shows a "File Save" dialog and return the
chosen file path, or an empty string, if aborted.
The default value for fileFilter is:
All Files (*.*)|*.*

result =
FileOutput.FileExists(filePath)

Returns True, if filePath exists.

Remarks

When FileInput.CreateFile cannot open the file, it produces an error and script
execution stops.

See the FileInput object for an example.

148

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

10.4.3 Multiple Input Files / Multiple Output Files

If you require to read or write more than one file at a time, you can open up to 4 input
files and 4 output files simultaneously, using additional global objects besides FileInput
and FileOutput. The list of available objects is:

Object Name Description

FileInput
FileInput2
FileInput3
FileInput4

Open up to 4 different files for reading. See Reading Files.

FileOutput
FileOutput2
FileOutput3
FileOutput4

Open up to 4 different files for writing. See Writing Files.

Example

' Multiple file output

' Create 4 text files
DL.AddComment "Writing 4 text files simultaneously..."
FileOutput.CreateFile "file1.txt"
FileOutput2.CreateFile "file2.txt"
FileOutput3.CreateFile "file3.txt"
FileOutput4.CreateFile "file4.txt"
' Write simultaneously
For i = 1 To 10
 FileOutput.WriteLine "File 1: Text line " & CStr(i)
 FileOutput2.WriteLine "File 2: Text line " & CStr(i)
 FileOutput3.WriteLine "File 3: Text line " & CStr(i)
 FileOutput4.WriteLine "File 4: Text line " & CStr(i)
Next
' Close all 4 files
FileOutput.CloseFile
FileOutput2.CloseFile
FileOutput3.CloseFile
FileOutput4.CloseFile
DL.AddComment "Done!"

10.5 Side Channels - Using Multiple Data Connections

Docklight Scripting offers a set of advanced script methods for basic multichannel
applications. It allows you to create up to 8 secondary data connections for sending and
receiving data, in extension to the main Docklight communication channels.

The additional / secondary data connections are called side channels. They are
controlled via the OpenSideChannel / CloseSideChannel methods. To transmit data on a
side channel, the DirectSend method is used.

10.5.1 OpenSideChannel / CloseSideChannel - Managing multiple channels

The OpenSideChannel / CloseSideChannel methods allow using multiple additional
data connections in one Docklight Scripting instance. Incoming data from side channels
can be distinguished / labeled using the rxChannelTag argument Transmitting data on
side channels is possible via the DirectSend method.

149

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL Methods for side channel / multichannel management:

Method Description

result =
DL.OpenSideChannel(newSetti
ngs [, channelNo] [,
rxChannelTag])

Open a side communication channel using the
communication channel settings from newSettings.

channelNo = 3 (default) or 4-10

rxChannelTag = "Channel3" (default):
RX data from this channel will be tagged like this:
<Channel3>... data received on this side
channel... </Channel3>
rxChannelTag = "norx":
The received communication data is not displayed at
all.
rxChannelTag = "" (empty string):
No channel tags are used and you cannot
distinguish the incoming data from "regular"
Docklight RX data.

result = True: Successfully opened the channel.
result = False: Channel could not be opened, e.g.
settings invalid or COM port not available.

DL.CloseSideChannel
[channelNo]

Closes the side channel.

Remarks

The side channels depend on the main connection status and vice versa:
· OpenSideChannel will automatically execute a StartCommunication, if required.
· CloseSideChannel only closes the specified side channel. Other communication

channels continue data transfer.
· StopCommunication closes the main communication channels and any open side

channels.
See also StartCommunication / StopCommunication.

Example

DL.SetChannelSettings "LOCALHOST:10001"
DL.StartCommunication
DL.OpenSideChannel "SERVER:10001"
DL.ResetReceiveCounter
DL.SendSequence "", "Test", "A"
DL.Pause 1000
DL.AddComment "Stop the Channel3. This should cause a TCP
client connection error..."
DL.CloseSideChannel
DL.Pause 4000
' close all channels
DL.StopCommunication

The communication window output could look like this:

02.10.2019 12:44:23.622 [TX] - Test
02.10.2019 12:44:23.634 [RX] - <Channel3>Test</Channel3> [Channel3]

 Stop the Channel3. This should cause a TCP client connection error...

150

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

02.10.2019 12:44:24.179 DOCKLIGHT reports: Error on channel
LOCALHOST:10001:
TCP/IP connection closed by the remote computer

10.5.2 DirectSend

The DirectSend method is an alternative to SendSequence for specific applications.
The syntax is similar to SendSequence syntax 2 and is used for the following purposes:
· Sending data on side channels - secondary data connections opened using

OpenSideChannel.
· Transmitting / injecting additional data, bypassing the OnSend data queue and without

adding communication window output. See Remarks and Example 2 below for a
practical example.

Syntax

result = DL.DirectSend channelNo, customSequence [, representation]

The DirectSend method syntax has these parts:

Part Description

channelNo channelNo = 3 - 10: Send data on a side channel (see
OpenSideChannel).
channelNo = 1: Send on Docklight Channel 1 (Send/Receive or
Monitoring Mode)
channelNo = 2: Send on Docklight Channel 2 (Monitoring Mode only)

customSequenc
e

Required. String containing the sequence to send. The sequence is
passed in ASCII representation by default. For HEX, Decimal or
Binary sequence data, use the optional representation argument
described below.

representation Optional. String value to define the format for customSequence. "A"
= ASCII (default), "H" = HEX, "D" = Decimal or "B" = Binary.

Remarks

result is true, if channelNo is valid and the data could be transmitted.

The main application for DirectSend is in combination with OpenSideChannel. In
addition, DirectSend can be useful when you are monitoring a data connection, and
you need to inject additional data into the data stream between the two devices. You can
effectively change the "passive monitoring" approach in Docklight into a "active
monitoring" where Docklight can create e.g. additional fault conditions that do not
appear in the original communication.

NOTE: DirectSend does not generate any communication window output, and does not
use the OnSend data queue. It just transmits your text or binary data "as is".

Example 1

' Precondition: Docklight Communication Mode = Send/Receive
DL.StopCommunication
' Use a UDP loopback for Channel 1
DL.SetChannelSettings "UDP:LOCALHOST:10001", 1

151

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

DL.StartCommunication
DL.OpenSideChannel "UDP:LOCALHOST:10002"
DL.DirectSend 1, "TX Data on Channel 1" + vbCrLf
DL.DirectSend 3, "TX Data on side channel" + vbCrLf
' and wait for the reactions
DL.Pause 100

The communication window output could look like this:

02.10.2019 11:51:26.749 [RX] - TX Data on Channel 1<CR><LF>
<Channel3>TX Data on side channel<CR><LF>
</Channel3>

NOTE: The data only appears on the RX data display. No TX communication output is
generated.

Example 2

' Precondition: Docklight Communication Mode = Monitoring
DL.StopCommunication
DL.SetChannelSettings "UDP:LOCALHOST:10001", 1
DL.SetChannelSettings "UDP:LOCALHOST:10002", 2
DL.StartCommunication
DL.DirectSend 2, "Bounce"
' and let this go on for a while
DL.Pause 1000

The communication window output could look like this:

02.10.2019 12:03:08.840 [UDP:LOCALHOST:10002] - Bounce
02.10.2019 12:03:08.840 [UDP:LOCALHOST:10001] - Bounce
02.10.2019 12:03:08.841 [UDP:LOCALHOST:10002] - Bounce
02.10.2019 12:03:08.848 [UDP:LOCALHOST:10001] - Bounce
02.10.2019 12:03:08.851 [UDP:LOCALHOST:10002] - Bounce
02.10.2019 12:03:08.864 [UDP:LOCALHOST:10001] - Bounce

NOTE: The data is repeatedly reflected between Channel 1 and Channel 2, because we
use UDP loopbacks on both ends, and Docklight Monitoring Mode uses Data
Forwarding by default.

10.6 Debug Object / Script Debugging

Docklight Scripting offers additional debugging features through the Debug object.

Method / Property Description

Debug.Mode = newValue Sets the script debug mode:
newValue = 0: No Debugging, all Debug methods are
ignored.
newValue = 1: Debug Mode. The Debug methods
described below are executed.

Debug.Assert
assertCondition

Breaks the script execution, if assertCondition is False.
The script execution can be continued manually using

the Continue Script toolbar.

Debug.Break Breaks the script execution unconditionally.

Debug.PrintMsg debugMsg Adds an additional debug text to the communication
window display, including a date/time stamp and the

152

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

current line of script code.

Remarks

The PrintMsg and Assert methods are very useful to print and watch variable values at
various points of execution.

For the Debug methods to have any effect, you need to enable Debug Mode first by
setting the Mode property to one:
Debug.Mode = 1

Example

' Example Debug object

Debug.Mode = 1

Count = 0
Do
 Count = Count + 1
 ' print some debug information: the value of the count
variable
 Debug.PrintMsg "count = " & count
 ' break script execution when reaching 5
 Debug.Assert (Count <> 5)
Loop Until Count = 10

' now the same thing with debug mode 'off' - Debug methods have
no effect

Debug.Mode = 0
Debug.PrintMsg "this is never printed"
Debug.Break ' this is never executed

DL.AddComment "Debug test ended"

After running this script, the communication window could look like this:

07.04.2009 15:45:06.078 line #9 Debug: count = 1

07.04.2009 15:45:06.100 line #9 Debug: count = 2

07.04.2009 15:45:06.119 line #9 Debug: count = 3

07.04.2009 15:45:06.131 line #9 Debug: count = 4

07.04.2009 15:45:06.145 line #9 Debug: count = 5

07.04.2009 15:45:06.158 line #11 Debug: Assert is False

(here the user manually continues using the Continue Script button)

07.04.2009 15:45:07.781 line #9 Debug: count = 6

07.04.2009 15:45:07.805 line #9 Debug: count = 7

07.04.2009 15:45:07.830 line #9 Debug: count = 8

07.04.2009 15:45:07.853 line #9 Debug: count = 9

153

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

07.04.2009 15:45:07.881 line #9 Debug: count = 10
 Debug test ended

10.7 #include Directive

Instructs the Docklight script preprocessor to insert the contents of the specified file at
the point where the #include directive appears.

Syntax

#include filePathName

The #include syntax has these parts:

Part Description

filePathName Required. String containing the file path (directory and file name) of
the Docklight script file (.pts file) to include. The file extension .pts can
be omitted.
If no directory is specified, Docklight uses the current working
directory.

Remarks

If filePathName is not a valid Docklight script file or does not exist, Docklight reports an
error and the script is not started.

The #include directive tells the preprocessor to treat the contents of a specified file as if
those contents had appeared in the source program at the point where the directive
appears.

You can organize constant declarations and function definitions into include files and
then use #include directives to add these definitions to any script. Include files are also
useful for incorporating declarations of external variables and complex data types.

Example

' Example #include directive
'
#include "myIncludeFile.pts"
DL.AddComment " Pi = " & conPi

With myIncludeFile.pts containing the following definition:

Const conPi = 3.14159265358979

The resulting communication window output would look like this:

 Pi = 3.14159265358979

10.8 Command Line Syntax

The Docklight Scripting application supports command line arguments to load (and run)
predefined project or script files. Use the following command syntax:

Docklight_Scripting.exe [-r] [-m] [-i] [projectPathName.ptp]
[scriptPathName.pts]

154

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

The Docklight scripting command line has these parts:

Part Description

-r Optional argument, used in combination with
scriptPathName.pts. Runs the script immediately. If no run-time
error or user stop occurs, the Docklight Scripting application is
closed after the script execution ends.

-m Optional argument. Minimize the Docklight Scripting application
window on startup.

-i Optional argument. Invisible operation / no main window. Useful
in combination with the -r option and scriptPathName.pts.

projectPathName.ptp Optional. Loads the Docklight project file projectPathName.ptp

scriptPathName.pts Optional. Loads the Docklight script file scriptPathName.pts

Remarks

If your script uses the StartLogging or the FileInput / FileOutput interface, and you just
provide a file name, but not a complete directory path as a parameter, Docklight
Scripting will use the current script / project directory.

Example

Docklight_Scripting.exe -r C:\myScript.pts

Loads the Docklight script file C:\myScript.pts and executes it.

10.9 Dialog: Customize / External Editor

Menu Scripting > Customize / External Editor

Use external application as Docklight Script Editor

Check this option to disable the built-in script editor, and launch an external editor
application for this purpose.

A flexible configuration syntax allows you to work with almost any editor that at least
supports opening a file using a command line like
myEditor.exe tempScriptFile.vbs

Application Control

This configuration file defines how Docklight Scripting controls the external editor.

Load preset for...

Predefined configuration files for three widely available editors.

TIP: We recommend the Notepad++ editor available at https://notepad-plus-plus.org/.
The Windows Notepad example is just for illustrative purposes and explains how the
configuration files work. You can use it as a starting point for integrating your own
editor.

How to integrate your own favorite editor

You can set the application path at the beginning of the configuration file, using the
path= syntax. Example line:
path=C:\Program Files\Notepad++

https://notepad-plus-plus.org/

155

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

All following lines of the configuration file have the following syntax:
<Edit Action> <Application Control>

Example line:
open: notepad.exe "%FILE%"

<Edit Action> can be one of the following Docklight editing actions:

Edit Action Description

open: Open a new script code file

goto: Go to a line number within the script file

save: Save the current file open

close: Close the current file open

<Application Control> can be one of the following operations:

Application
Control

Description

sendkeys Send one or more keystrokes to the external editor. It uses the same
argument syntax as the Windows Script Host SendKeys method. See
the related Microsoft documentation for details. Example:
goto: sendkeys +^{HOME}{DOWN %LINE%}+{UP}

endtask End the external application. Example:
close: endtask

activate Activate the external application window. Example:
goto: activate

sleep Wait up to 500 milliseconds to give the external application some extra
time to sort things out. This might be necessary when working with the
sendkeys: operation described above. Example:
open: sleep 100

Command
Line

Besides the above operations, you can execute any Windows
command line, e.g. for launching your external editor. Example:
open: notepad++.exe -nosession -lvb -n%LINE% "%FILE
%"

For each <Edit Action> you can define several command lines, e.g.
goto: sendkeys +^{HOME}{DOWN %LINE%}+{UP}
goto: activate

The following wildcards are available for <Application Control>

Wildcard Description

%FILE% Path to a temporary file containing the script code to edit. Docklight
Scripting creates and manages the temporary file.

%FILE_UNIX
%

Same as %FILE%, but uses a UNIX-style '/' for the path separator. This
is useful for some open source editor packages that have problems
with the Windows backslash ('\') separator.

%FILE_ESC% Same as %FILE%, but uses a double backslash ('escape sequence')
for the path separator. This is necessary e.g. when working with the
SciTE free source code editor.

%LINE% The current source code line number. This is used for the goto:
action.

Remarks

http://msdn.microsoft.com/en-us/library/ms950396.aspx

156

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Reference (Scripting)

The External Editor Support is a flexible and open solution to our users who are working
with large script projects and would prefer to work with a full-featured editing package.

The application control interface offered described above gives you flexibility, but we
are aware of the limitations of controlling third-party applications that are not really
designed to be controlled from outside.

If you find a smart configuration file for your personal favorite editor, or you are
experiencing problems with the above interface, our Customer Support would be happy
to hear about it.

Support

158

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Support

11 Support

11.1 Web Support and Troubleshooting

For up-to-date FAQs and troubleshooting information, see our online support pages
available at

www.docklight.de/support/

For Docklight-related news and information about free maintenance updates, see:

www.docklight.de/news.htm

11.2 E-Mail Support

We provide individual e-mail support to our registered customers. Please include your
Docklight license key number in your request. We will contact you as soon as possible
to find a solution to your problem. Send your support request to

support@docklight.de

https://docklight.de/support/
https://docklight.de/news.htm
mailto:support@docklight.de

Appendix

160

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

12 Appendix

12.1 ASCII Character Set Tables

Control Characters

Dec Hex ASCII Char. Meaning
===
0 00 NUL Null
1 01 SOH Start of heading
2 02 STX Start of text
3 03 ETX Break/end of text
4 04 EOT End of transmission
5 05 ENQ Enquiry
6 06 ACK Positive acknowledgment
7 07 BEL Bell
8 08 BS Backspace
9 09 HT Horizontal tab
10 0A LF Line feed
11 0B VT Vertical tab
12 0C FF Form feed
13 0D CR Carriage return
14 0E SO Shift out
15 0F SI Shift in/XON (resume output)
16 10 DLE Data link escape
17 11 DC1 XON - Device control character 1
18 12 DC2 Device control character 2
19 13 DC3 XOFF - Device control character 3
20 14 DC4 Device control character 4
21 15 NAK Negative Acknowledgment
22 16 SYN Synchronous idle
23 17 ETB End of transmission block
24 18 CAN Cancel
25 19 EM End of medium
26 1A SUB substitute/end of file
27 1B ESC Escape
28 1C FS File separator
29 1D GS Group separator
30 1E RS Record separator
31 1F US Unit separator

Printing Characters

Dec Hex ASCII Char. Meaning
====================================
32 20 Space
33 21 ! !
34 22 " "
35 23 # #
36 24 $ $
37 25 % %
38 26 & &
39 27 ' '
40 28 ((
41 29))

161

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

42 2A * *
43 2B + +
44 2C , ,
45 2D - -
46 2E . .
47 2F / /
48 30 0 Zero
49 31 1 One
50 32 2 Two
51 33 3 Three
52 34 4 Four
53 35 5 Five
54 36 6 Six
55 37 7 Seven
56 38 8 Eight
57 39 9 Nine
58 3A : :
59 3B ; ;
60 3C < <
61 3D = =
62 3E > >
63 3F ? ?
64 40 @ @
65 41 A A
66 42 B B
67 43 C C
68 44 D D
69 45 E E
70 46 F F
71 47 G G
72 48 H H
73 49 I I
74 4A J J
75 4B K K
76 4C L L
77 4D M M
78 4E N N
79 4F O O
80 50 P P
81 51 Q Q
82 52 R R
83 53 S S
84 54 T T
85 55 U U
86 56 V V
87 57 W W
88 58 X X
89 59 Y Y
90 5A Z Z
91 5B [[
92 5C \ \
93 5D]]
94 5E ^ ^
95 5F _ _
96 60 ` `
97 61 a a
98 62 b b

162

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

99 63 c c
100 64 d d
101 65 e e
102 66 f f
103 67 g g
104 68 h h
105 69 i i
106 6A j j
107 6B k k
108 6C l l
109 6D m m
110 6E n n
111 6F o o
112 70 p p
113 71 q q
114 72 r r
115 73 s s
116 74 t t
117 75 u u
118 76 v v
119 77 w w
120 78 x x
121 79 y y
122 7A z z
123 7B { {
124 7C | |
125 7D } }
126 7E ~ Tilde
127 7F DEL Delete

12.2 Hot Keys

General Hot Keys

Applies to
· Communication Window (ASCII, HEX, Decimal, Binary)
· Edit Send Sequence dialog / Edit Receive Sequence dialog
· Documentation Area

Function Hot Key

Context-specific help F1

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Delete Del

Select all Ctrl+A

Context-specific Hot Keys

Docklight menu

Menu Function Hot Key

File New Project Ctrl+N

163

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

File Open Project Ctrl+O

File Save Project Ctrl+S

File Print Communication Ctrl+P

Edit Find Sequence in Comm.Window Ctrl+F

Run Start Communication F5

Run Stop Communication F6

Tools Start Comm. Logging F2

Tools Stop Comm. Logging F3

Tools Keyboard Console On Ctrl+F5

Tools Keyboard Console Off Ctrl+F6

Tools Minimize/Restore Documentation/Script
Area

F12

Tools Minimize/Restore Sequence Lists Shift+F12

Scripting Run Script Shift+F5

Scripting Stop Script Shift+F6

Scripting Break Script Shift+F7

Scripting Continue Script Shift+F8

Scripting Save Script Ctrl+T

Communication Window

Function Hot Key

Find a Sequence Ctrl+F

Clear All Communication Windows Ctrl+W

Toggle Between ASCII, HEX, Decimal and Binary
Representation

Ctrl+Tab

Send Sequences / Receive Sequences List

Function Hot Key

Delete This Sequence Del

Edit This Sequence Ctrl+E

Send This Sequence
- Send Sequences List only -

Space

Edit Send Sequence Dialog / Edit Receive Sequence Dialog

Function Hot Key

Cancel Esc

Wildcard '?' (matches one character) F7

Wildcard '#' (matches one or zero characters) F8

Function Character '&' (delay for x * 0.01 sec.) F9

Function Character '%' - (Break state) F10

Function Character '!' (handshake signals) F11

Documentation Area

Function Hot Key

Default Font Ctrl+D

164

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

12.3 RS232 Connectors / Pinout

The most common connectors for RS232 communications are

· 9-pole SUB D9 (EIA/TIA 574 standard). Introduced by IBM and widely used. See
below.

· 25-pole SUB D25 (RS232-C). This is the original connector introduced for the
RS232 standard. It provides a secondary communication channel.

· 8-pole RJ45 (different pinouts for Cisco/Yost wiring, EIA/TIA-561, and other
manufacturer-specific pinouts).

RS232 SUB D9 (D-Sub DB9) Pinout

View: Looking into the male connector.
Pinout: From a DTE perspective (the DTE transmits data on the TX Transmit Data line,
while the DCE receives data on this line)

Pin No. Signal Name Description DTE in/out

1 DCD Data Carrier Detect Input

2 RX Receive Data Input

3 TX Transmit Data Output

4 DTR Data Terminal Ready Output

5 SGND Signal Ground -

6 DSR Data Set Ready Input

7 RTS Request To Send Output

8 CTS Clear To Send Input

9 RI Ring Indicator Input

RS232 SUB D25 (D-Sub DB25) Pinout

View: Looking into the male connector.
Pinout: From a DTE perspective.

Pin No. Signal Name Description

1 - Protective/Shielding Ground

2 TX Transmit Data

3 RX Receive Data

4 RTS Request To Send

5 CTS Clear To Send

6 DSR Data Set Ready

7 SGND Signal Ground

8 DCD Data Carrier Detect

165

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

9 - Reserved

10 - Reserved

11 - Unassigned

12 SDCD Secondary Data Carrier Detect

13 SCTS Secondary Clear To Send

14 STx Secondary Transmit Data

15 TxCLK Transmit Clock

16 SRx Secondary Receive Data

17 RxCLK Receive Clock

18 LL Local Loopback

19 SRTS Secondary Request To Send

20 DTR Data Terminal Ready

21 RL/SQ Remote Loopback / Signal
Qualify Detector

22 RI Ring Indicator

23 CH/CI Signal Rate Selector

24 ACLK Auxiliary Clock

25 - Unassigned

RJ45 8-pole pinouts

Several conflicting pinouts exist and are in use for RJ45 connectors in RS232
communications:

Cisco Console / Yost Cable / Rollover cable applications

Pinout: From a DTE perspective (the DTE transmits data on the TX Transmit Data line)

Pin No. Signal Name Description

1 CTS Clear To Send

2 DCD Data Carrier Detect

3 RX Receive Data

4 SGND Signal Ground

5 SGND Signal Ground

6 TX Transmit Data

7 DTR Data Terminal Ready

8 RTS Request To Send

NOTE: The Cisco/Yost pinout is used with cables that are wired "mirror image" on one
end., similar to a Null Modem Cable with Handshaking. Every device has the same RJ45

166

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

female socket and transmits data on the same pin. See also the Yost Serial Device
Wiring Standard .

 EIA/TIA-561 standard for RJ45 / 8P8C modular connector

Pin No. Signal Name Description

1 DSR / RI Data Set Ready / Ring Indicator

2 DCD Data Carrier Detect

3 DTR Data Terminal Ready

4 SGND Signal Ground

5 RX Receive Data

6 TX Transmit Data

7 CTS Clear To Send

8 RTS Request To Send

NOTE: Though this is an official standard, it is more likely that you will find RS232 RJ45
products with different pinout, either the Cisco/Yost variant above or manufacturer-
specific pinouts, e.g. MOXA Nport.

12.4 Standard RS232 Cables

Classic RS232 Connections

When connecting two serial devices, different cable types must be used, depending on
the characteristics of the serial device and the type of communication used.

Overview of RS232 SUB D9 (D-Sub DB9) interconnections

serial device 1 serial device 2 flow control
(handshaking)

recommended cable

DTE (Data
Terminal
Equipment)

DTE no handshake
signals

simple null modem cable

DTE DTE DTE/DCE
compatible
hardware flow
control

null modem cable with partial
handshaking

DCE (Data
Communications
Equipment)

no handshake
signals

simple straight cable

DTE DCE hardware flow
control

full straight cable

DCE DCE no handshake
signals

simple null modem cable, but with
SUB D9 male connectors on both
ends

DCE DCE hardware flow
control

null modem cable with partial
handshaking but with SUB D9
male connectors on both ends

NOTE: A great alternative to make the correct interconnection between various DTE and
DCE type devices is to use the Yost Serial Device Wiring Standard approach by Dave
Yost.

SUB D9 Simple Straight Cable

https://yost.com/computers/RJ45-serial/
https://yost.com/computers/RJ45-serial/
https://yost.com/computers/RJ45-serial/
http://yost.com
http://yost.com

167

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

Area of Application: DTE-DCE Communication where no additional handshake signals
are used.

SUB D9 Full Straight Cable

Area of Application: DTE-DCE Communication with hardware flow control using
additional handshake signals.

SUB D9 Simple Null Modem Cable without Handshaking

Area of Application: DTE-DTE Communication where no additional handshake signals
are used.

SUB D9 Null Modem Cable with Full Handshaking

Area of Application: DTE-DTE Communication with DTE/DCE compatible hardware
flow control. Works also when no handshake signals are used.

168

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

169

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

12.5 Docklight Monitoring Cable RS232 SUB D9

Docklight Monitoring Cable is a RS232 full duplex monitoring cable that is designed for
Monitoring serial communications between two devices.

We offer a rugged and fully shielded RS232 Monitoring cable acessory. For more
details see our product overview pages and the Docklight Monitoring Cable datasheet.

NOTE: Our Docklight Tap or Tap Pro / Tap RS485 data taps offer superior monitoring
characteristics, and do not require two free RS232 COM ports on your PC. Only in rare
or legacy applications the Docklight Monitoring Cable is still the preferred choice today.

TIP: An inexpensive and quick solution for basic monitoring can be making your own
Monitoring Cable using a flat ribbon cable and SUB D9 insulation displacement
connectors, available at any electronic parts supplier.

http://www.docklight.de
http://www.docklight.de/pdf/docklight_monitoring_cable.pdf

170

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

12.6 Docklight Tap

Docklight Tap is a full-duplex RS232 communications monitoring solution for the USB
port.

Area of Application: Monitoring serial communications between two devices

Docklight has built-in support for the Docklight Tap. It recognizes the dual port USB
serial converter and offers high-speed, low-latency access to the monitoring data. Use
Docklight Monitoring Mode and Receive Channel settings TAP0 / TAP1. See the
Docklight Project Settings and How to Obtain Best Timing Accuracy for details.

Please also see our product overview pages for more information about the Docklight
Tap.

http://docklight.de/information/#docklight-tap

171

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

12.7 Docklight Tap Pro / Tap 485

Docklight Tap Pro and Docklight Tap 485 are advanced, high-resolution monitoring
solutions for the USB port. They allow true milliseconds time measurements and
monitoring high-speed data connections including RS232 status/handshake lines. They
are supported by Docklight in a similar way as the Docklight Tap.

For Docklight Tap Pro and Tap 485 applications, use Docklight Monitoring Mode and
Receive Channel settings VTP0 / VTP1. See the Docklight Project Settings for more
details.

Please also see our product overview pages for more information about the Docklight
Tap Pro and Docklight Tap 485.

Docklight Tap Pro

Docklight Tap RS485

http://docklight.de/information/#docklight-tap-pro

172

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Appendix

Glossary / Terms Used

174

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

13 Glossary / Terms Used

13.1 Action

For a Receive Sequence, the user may define an action that is performed after
receiving the specified sequence. Possible actions are
· Sending a Send Sequence

Only Send Sequences without any wildcards can be used
· Inserting a comment

A user-defined text or an additional date/time stamp is added to the communication
data window and log file

· Triggering a Snapshot
· Stopping communication

13.2 Break

A break state on an RS232 connection is characterized by the TX line going to Space
(logical 0) for a longer period than the maximum character frame length including start
and stop bits. Some application protocols, e.g. LIN, use this for synchronization
purposes.

13.3 Character

A character is the basic unit of information processed by Docklight. Docklight always
uses 8 bit characters. Nevertheless, the communication settings also allow data
transmission with 7 bits or less. In this case, only a subset of the 256 possible 8 bit
characters will be used but the characters will still be stored and processed using an 8
bit format.

13.4 CRC

Cyclic Redundancy Code. A CRC is a method to detect whether a received
sequence/message has been corrupted, e.g. by transmission errors. This is done by
constructing an additional checksum value that is a function of the message's payload
data, and then appending this value to the original message. The receiver calculates the
checksum from the received data and compares it to the transmitted CRC value to see if
the message is unmodified. CRCs are commonly used because they allow the detection
of typical transmission errors (bit errors, burst errors) with very high accuracy.

CRC algorithms are based on polynomial arithmetic, and come in many different
versions. Common algorithms are CRC-CCITT, CRC-16 and CRC-32. An example of an
application protocol that uses a CRC is Modbus over Serial Line.

A popular article about CRCs is "CRC Implementation Code in C" by Michael Barr,
formerly published as "Slow and Steady Never Lost the Race" and "Easier Said Than
Done":
https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code

Docklight Scripting's CRC functionality (DL.CalcChecksum) was inspired by the above
article and the proposed Boost CRC library:
http://www.boost.org/libs/crc/index.html

https://barrgroup.com/Embedded-Systems/How-To/CRC-Calculation-C-Code
http://www.boost.org/libs/crc/index.html

175

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

Last not least, if you are truly fascinated by CRC alchemy, you will sooner or later run
into mentions of the following classic article from 1993:
 "A Painless Guide to CRC Error Detection Algorithms" by Ross N. Williams:
http://ross.net/crc/crcpaper.html / http://ross.net/crc/download/crc_v3.txt

13.5 DCE

Data Communications Equipment. The terms DCE and DTE refer to the serial devices
on each side of an RS232 link. A modem is a typical example of a DCE device. DCE
are normally equipped with a female SUB D9 or SUB D25 connector. See also DTE.

13.6 DTE

Data Terminal Equipment. The terms DCE and DTE refer to the serial devices on each
side of an RS232 link. A PC or a terminal are examples of a typical DTE device. DTE
are commonly equipped with a male SUB D9 or SUB D25 connector. All pinout
specifications are written from a DTE perspective. See also DCE.

13.7 Flow Control

Flow control provides a mechanism for suspending transmission while one device is
busy or for some reason cannot further communicate. The DTE and DCE must agree
on the flow control mechanism used for a communication session. There are two types
of flow control: hardware and software.

Hardware Flow Control
Uses voltage signals on the RS232 status lines RTS / DTR (set by DTE) and CTS / DSR
(set by DCE) to control the transmission and reception of data. See also RS232 pinout.

Software Flow Control
Uses dedicated ASCII control characters (XON / XOFF) to control data transmission.
Software flow control requires text-based communication data or other data that does
not contain any XON or XOFF characters.

13.8 HID

HID (Human Interface Device) is a device class and API used for USB and Bluetooth
devices.

Docklight Scripting supports HID access via VID / PID (vendor ID / product ID) or the
full Windows USB device path. Docklight Scripting allows binary and text-oriented data
transfers via HID Input and Output Reports.

A common application (besides standard Windows keyboard/mouse integration) for the
HID device class are Embedded Devices with a custom protocol for simple data
transfer, e.g. measurement gauges or sensors

TIP: For more information on accessing HID devices via Docklight Scripting, see also
our online support resources at www.docklight.de/support/.

NOTE: Docklight Scripting currently only supports HID Input/Output Reports. Feature
reports are not supported.

http://ross.net/crc/crcpaper.html
http://www.ross.net/crc/
http://www.usb.org/developers/hidpage/
https://www.bluetooth.org
https://docklight.de/support/

176

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

13.9 LIN

Local Interconnect Network. A low cost serial communication bus targeted at distributed
electronic systems in vehicles, especially simple components like door motors, steering
wheel controls, climate sensors, etc. See also the Wikipedia entry about LIN .

13.10 Modbus

Modbus is an application layer messaging protocol that provides client/server
communications between devices connected on different types of buses or networks. It
is commonly used as "Modbus over Serial Line" in RS422/485 networks, but can be
implemented using TCP over Ethernet as well ("Modbus TCP").

Two different serial transmission modes for Modbus are defined: "RTU mode" for 8 bit
binary transmissions, and "ASCII mode". "RTU mode" is the default mode that must be
implemented by all devices.

See www.modbus.org for a complete specification of the Modbus protocol.

13.11 Multidrop Bus (MDB)

Multidrop Bus (MDB) is a more exotic RS232/RS485 application, used for example in
vending machine controllers, which requires a 9 bit compliant UART. The 9th data bit is
used for selecting between an ADDRESS and a DATA mode.

A way to monitor and simulate such communication links using standard 8-bit UARTs,
i.e. standard RS232-to-USB converters, is to use temporary parity changes.

See also Wikipedia on MDB and the original MDB 3.0 specification for more
information and details.

13.12 Named Pipe

A Named Pipe is a shared-memory mechanism that can be used for communication
between two processes on a Windows PC.

Docklight Scripting can open a client connection to a Named Pipe server and send or
receive 8-bit ASCII or byte data.

For details on Named Pipes see the Windows Development Center.

13.13 Receive Sequence

A Receive Sequence is a sequence that can be detected by Docklight within the
incoming serial data. A Receive Sequence is specified by
1. an unique name (e.g. "Modem Answer OK"),
2. a character sequence (e.g. "6F 6B 13 10" in HEX format),
3. an action that is triggered when Docklight receives the defined sequence.

https://en.wikipedia.org/wiki/Local_Interconnect_Network
http://www.modbus.org/
http://en.wikipedia.org/wiki/Multidrop_bus
http://www.vending.org/technical/MDB_3.0.pdf
http://dev.windows.com/en-us

177

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

13.14 RS232

The RS232 standard is defined by the EIA/TIA (Electronic Industries Alliance /
Telecommunications Industry Associations). The standard defines an asynchronous
serial data transfer mechanism, as well as the physical and electrical characteristics of
the interface.

RS232 uses serial bit streams transmitted at a predefined baud rate. The information is
separated into characters of 5 to 8 bits lengths. Additional start and stop bits are used
for synchronization, and a parity bit may be included to provide a simple error detection
mechanism.

The electrical interface includes unbalanced line drivers, i.e. all signals are represented
by a voltage with reference to a common signal ground. RS232 defines two states for
the data signals: mark state (or logical 1) and space state (or logical 0). The range of
voltages for representing these states is specified as follows:

Signal State Transmitter Voltage
Range

Receiver Voltage
Range

Mark (logical 1) -15V to -5V -25V to -3V

Space (logical 0) +5V to +15V +3V to +25V

Undefined -5V to +5V -3V to +3V

The physical characteristics of the RS232 standard are described in the section RS232
Connectors / Pinout

13.15 RS422

An RS422 communication link is a four-wire link with balanced line drivers. In a
balanced differential system, one signal is transmitted using two wires (A and B). The
signal state is represented by the voltage across the two wires. Although a common
signal ground connection is necessary, it is not used to determine the signal state at the
receiver. This results in a high immunity against EMI (electromagnetic interference) and
allows cable lengths of over 1000m, depending on the cable type and baud rate.

The EIA Standard RS422-A "Electrical characteristics of balanced voltage digital
interface circuits" defines the characteristics of an RS422 interface.

Transmitter and receiver characteristics according to RS422-A are:

Signal State Transmitter Differential
Voltage VAB

Receiver Differential Voltage
VAB

Mark (or logical 1) -6V to -2V -6V to -200mV

Space (or logical 0) +2V to +6V +200mV to 6V

Undefined -2V to +2V -200mV to +200mV

Permitted Common Mode Voltage Vcm (mean voltage of A and B terminals with
reference to signal ground): -7V to +7V

13.16 RS485

The RS485 standard defines a balanced two-wire transmission line, which may be
shared as a bus line by up to 32 driver/receiver pairs. Many characteristics of the

178

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

transmitters and receivers are the same as RS422. The main differences between
RS422 and RS485 are
· Two-wire (half duplex) transmission instead of four-wire transmission
· Balanced line drivers with tristate capability. The RS485 line driver has an additional

"enable" signal which is used to connect and disconnect the driver to its output
terminal. The term "tristate" refers to the three different states possible at the output
terminal: mark (logical 1), space (logical 0) or "disconnected"

· Extended Common Mode Voltage (Vcm) range from -7V to +12V.

The EIA Standard RS485 "Standard for electrical characteristics of generators and
receivers for use in balanced digital multipoint systems" defines the characteristics of
an RS485 system.

13.17 Send Sequence

A Send Sequence is a sequence that can be sent by Docklight. A Send Sequence is
specified by
1. an unique name (e.g. "Set modem speaker volume"),
2. a character sequence (e.g. "41 54 4C 0D 0A" in HEX format).

There are two ways to make Docklight send a sequence:
· Sending a sequence can be triggered manually by pressing the send button in the

Send Sequences list
(see Main Window).

· Sending a sequence may be one possible reaction when Docklight detects a specific
Receive Sequence within the incoming data (see Action).

13.18 Sequence

A sequence consists of one or more 8 bit characters. A sequence can be any part of
the serial communications you are analyzing. It can consist of printable ASCII
characters, but may also include every non-printable character between 0 and 255
decimal.
Example:
ATL2 (ASCII format)
41 54 4C 0D 0A (HEX format)
This sequence is a modem command to set the speaker volume on AT compatible
modems. It includes a Carriage Return (0D) and a Line Feed (0A) character at the end
of the line.

The maximum sequence size in Docklight is 1024 characters.

13.19 Sequence Index

The Sequence Index is the element number of a Send Sequence within the Send
Sequence List, or of a Receive Sequence within the Receive Sequence List. The
Sequence Index is displayed in the upper left corner of the Edit Send Sequence or Edit
Receive Sequence dialog.

179

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

13.20 Serial Device Server

A Serial Device Server is a network device that offers one or more serial COM ports
(RS232, RS422/485) and transmits/receives the serial data over an Ethernet network.
Serial Device Servers are a common way for upgrading existing devices that are
controlled via serial port and make them "network-enabled".

13.21 Snapshot

Creating a snapshot in Docklight means generating a display of the serial
communication shortly before and after a Trigger sequence has been detected. This is
useful when testing for a rare error which is characterized by a specific sequence. See
Catching a specific sequence and taking a snapshot... for more information.

13.22 TCP

Transmission Control Protocol. TCP is, along with UDP, is the main transport-layer
protocol used in IP networks. TCP is connection-oriented - before two network hosts
can communicate using TCP they must first establish a connection. TCP is a byte
stream protocol that guarantees delivery. TCP ensures that data packets are transmitted
error-free and in the right order, even if the underlying network is unreliable.

TCP uses port numbers 1-65535 to identify application end-points. Examples of well-
known TCP applications and port numbers are FTP (21), TELNET (23), SMTP (25),
HTTP (80) and POP3 (110).

13.23 Trigger

A Trigger is a Receive Sequence with the "Trigger" option enabled (see Dialog: Edit
Receive Sequence). When the Snapshot function is enabled, Docklight will not produce
any output until a trigger sequence has been detected in the serial communication data.
See Catching a specific sequence and taking a snapshot... for more information.

13.24 UART

Universal Asynchronous Receiver / Transmitter. The UART is the hardware component
that performs the main serial communications tasks:
- converting characters into a serial bit stream
- adding start / stop / parity bits, and checking for parity errors on the receiver side
- all tasks related to timing, baud rates and synchronization

Common UARTs are compatible with the 16550A UART. They include a 16 byte buffer
for incoming data (RX FiFo), and a 16 byte buffer for outgoing data (TX FiFo). Usually
these buffers can be disabled/enabled using the Windows Device Manager and
opening the property page for the appropriate COM port (e.g. COM1).

13.25 UDP

User Datagram Protocol. UDP is a transport-layer protocol used in IP networks. UDP is
a connectionless protocol - the communication partners do not establish a connection
before transmitting data. UDP does not provide reliable or in-order transmissions.

180

Docklight Scripting V2.4 User Manual 02/2023

 Copyright 2002-2023 www.fuh-edv.de / www.kickdrive.de

Glossary / Terms Used

Datagrams can arrive out of order, arrive duplicated, or go missing during transmission.
Applications requiring ordered reliable delivery of streams of data should instead use
TCP.

UDP is faster than TCP and has advantages for many lightweight or timing-critical
network applications. UDP is used for the Domain Name System on the Internet, for
streaming media applications like Voice Over IP, and for broadcasting in IP networks.

UDP uses port numbers 1-65535 to identify application end-points. Examples of well-
known UDP services and port numbers are DNS (53), TIME (37), and SNMP (161 and
162).

13.26 Virtual Null Modem

A virtual null modem is a PC software driver which emulates two serial COM ports that
are connected by a null modem cable. If one PC application sends data on one virtual
COM port, a second PC application can receive this data on the second virtual COM
port and vice versa.

By using a virtual null modem driver on your PC you can easily debug and simulate
serial data connections without the use of real RS232 ports and cables.

Virtual COM connections do not give you the same timing as real RS232 connections
and usually do not emulate the actual bit-by-bit transmission using a predefined baud
rate. Any data packet sent on the first COM port will appear in the second COM port's
receive buffer almost immediately. For most debugging and simulation purposes, this
limitation can be easily tolerated. Some virtual null modem drivers offer an additional
baud rate emulation mode, where the data transfer is delayed to emulate a real RS232
connection and its limited transmission rate.

For an Open Source Windows solution that has been successfully tested with Docklight,
see
https://sourceforge.net/projects/com0com/
We recommend the com0com v2.2.2.0 signed x64 version, which we tested
successfully Windows 10 and Windows 11:
https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-
fre-signed.zip/download

13.27 Wildcard

A wildcard is a special character that serves as a placeholder within a sequence. It may
be used for Receive Sequences when parts of the received data are unspecified, e.g.
measurement readings reported by a serial device. Wildcards can also be used to
support parameters in a Send Sequence.

The following types of wildcards are available in Docklight:
Wildcard '?' (F7): Matches exactly one arbitrary character (any ASCII code between 0
and 255)
Wildcard '#' (F8): Matches zero or one character. This is useful for supporting variable
length command arguments (e.g. a status word) in Send / Receive Sequences. See
Checking for sequences with random characters or Sending commands with
parameters for examples and additional information.
Other placeholders that allow random data:
Function Character '!' (F12): Bitwise comparison. This is useful if there are one or
several bits within a character which should be tested for a certain value. See Function
character ' '̂ (F12) - bitwise comparisons for details and an example.

https://sourceforge.net/projects/com0com/
https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-fre-signed.zip/download
https://sourceforge.net/projects/com0com/files/com0com/2.2.2.0/com0com-2.2.2.0-x64-fre-signed.zip/download

	Table of Contents
	Copyright
	Introduction
	Docklight - Overview
	Docklight Scripting - Overview
	Typical Applications
	System Requirements

	User Interface
	Main Window (Scripting)
	Clipboard - Cut, Copy & Paste
	Documentation Area

	Features and Functions
	How Serial Data Is Processed and Displayed
	Editing and Managing Sequences

	Working with Docklight
	Testing a Serial Device or a Protocol Implementation
	Simulating a Serial Device
	Monitoring Serial Communications Between Two Devices
	Catching a Specific Sequence and Taking a Snapshot of the Communication
	Logging and Analyzing a Test
	Checking for Sequences With Random Characters (Receive Sequence Wildcards)
	Saving and Loading Your Project Data, Script, and Options

	Working with Docklight (Advanced)
	Sending Commands With Parameters (Send Sequence Wildcards)
	How to Increase the Processing Speed and Avoid "Input Buffer Overflow" Messages
	How to Obtain Best Timing Accuracy
	Calculating and Validating Checksums
	Controlling and Monitoring RS232 Handshake Signals
	Creating and Detecting Inter-Character Delays
	Setting and Detecting a "Break" State
	Testing a TCP Server Device (Scripting)
	Monitoring a Client/Server TCP Connection (Scripting)

	Examples and Tutorials
	Testing a Modem - Sample Project: ModemDiagnostics.ptp
	Reacting to a Receive Sequence - Sample Project: PingPong.ptp
	Modbus RTU With CRC checksum - Sample Project: ModbusRtuCrc.ptp

	Examples and Tutorials (Scripting)
	Automated Modem Testing - Sample Script: ModemScript.pts
	Startup From Command Line - Sample Script: LogStartupScript.pts
	Manipulating a RS232 Data Stream - Sample Script: CharacterManipulation.pts
	TCP/IP Communications - Sample Projects PingPong_TCP_Server/Client.ptp

	Reference
	Menu and Toolbar (Scripting)
	Dialog: Edit Send Sequence
	Dialog: Edit Receive Sequence
	Dialog: Start Logging / Create Log File(s)
	Dialog: Customize HTML Output
	Dialog: Find Sequence
	Dialog: Send Sequence Parameter
	Dialog: Project Settings - Communication
	Dialog: Project Settings - Flow Control
	Dialog: Project Settings - Communication Filter
	Dialog: Options
	Dialog: Expert Options
	Keyboard Console
	Checksum Specification

	Reference (Scripting)
	VBScript Basics
	Copyright Notice
	Control Structures
	Decision Structures
	Loop Structures

	Variables, Arrays, Constants and Data Types
	Operators
	Date/Time Functions
	Miscellaneous

	Docklight Script Commands - The DL Object
	Methods
	AddComment
	ClearCommWindows
	GetReceiveCounter
	GetDocklightTimeStamp
	OpenProject
	Pause
	Quit
	ResetReceiveCounter
	SendSequence
	StartCommunication
	StopCommunication
	StartLogging
	StopLogging
	WaitForSequence

	Methods (Advanced)
	CalcChecksum
	ConvertSequenceData
	GetChannelSettings
	GetChannelStatus
	GetCommWindowData
	GetEnvironment
	GetHandshakeSignals
	GetKeyState
	GetReceiveComments
	InputBox2
	MsgBox2
	LoadProgramOptions
	PlaybackLogFile
	SaveProgramOptions
	SetChannelSettings
	SetContentsFilter
	SetHandshakeSignals
	SetUserOutput
	SetWindowLayout
	ShellRun
	UploadFile

	Properties
	NoOfSendSequences
	NoOfReceiveSequences

	OnSend / OnReceive Event Procedures
	Sub DL_OnSend() - Send Sequence Data Manipulation
	Sub DL_OnReceive() - Evaluating Receive Sequence Data
	OnSend / OnReceive - Timing and Program Flow

	FileInput / FileOutput Objects for Reading and Writing Files
	FileInput - Reading Files
	FileOutput - Writing Files
	Multiple Input Files / Multiple Output Files

	Side Channels - Using Multiple Data Connections
	OpenSideChannel / CloseSideChannel - Managing multiple channels
	DirectSend

	Debug Object / Script Debugging
	#include Directive
	Command Line Syntax
	Dialog: Customize / External Editor

	Support
	Web Support and Troubleshooting
	E-Mail Support

	Appendix
	ASCII Character Set Tables
	Hot Keys
	RS232 Connectors / Pinout
	Standard RS232 Cables
	Docklight Monitoring Cable RS232 SUB D9
	Docklight Tap
	Docklight Tap Pro / Tap 485

	Glossary / Terms Used
	Action
	Break
	Character
	CRC
	DCE
	DTE
	Flow Control
	HID
	LIN
	Modbus
	Multidrop Bus (MDB)
	Named Pipe
	Receive Sequence
	RS232
	RS422
	RS485
	Send Sequence
	Sequence
	Sequence Index
	Serial Device Server
	Snapshot
	TCP
	Trigger
	UART
	UDP
	Virtual Null Modem
	Wildcard

